Contribution from the Laboratoire de Chimie de Coordination, UA **416** CNRS, and Laboratoire de Chimie Quantique, ER **139** CNRS, UniversitE Louis Pasteur, **4** Rue Blaise Pascal, **F-67070** Strasbourg CMex, France, and Istituto di Chimica Generale ed Inorganica, Università di Parma, Centro di Studio per la Strutturistica Diffrattometrica del CNR, Viale delle Scienze, **1-43 100** Parma, Italy

Phosphido-Bridged, Heterodi-, Heterotri-, and Heterotetranuclear Complexes of Palladium and Platinum with Transition Metals. Crystal Structure of

$[\{({\rm OC})_4Mn(\mu-\rm PPh_2)\}_2Pt(\rm PPh_3)]$ $(Mn-Mn, 2Mn-Pt)$

Pierre Braunstein,*.[†] Ernesto de Jesús,^{†,†} Alain Dedieu,[†] Maurizio Lanfranchi,[§] and Antonio Tiripicchio[§]

Received June *21, 1991*

Two methodologies have been used for the synthesis of phosphido-bridged heterometallic complexes of palladium or platinum with transition metals. First, trinuclear mixed-metal chain complexes *trans*- $[Pd(m(CO)]_2(NCPh)_1]$ (m = Cr(CO)₂Cp, Mo(CO)₂C_P, W(CO)₂Cp, Mn(CO)₄) were reacted with 3 equiv of secondary phosphines PR₂H (R = Ph, Cy), affording the dinuclear complexes

 $m(\mu-PR_2)Pd(PR_2H)$, (1-6). When the complexes *trans*- $[Pt/m(CO)]_2(NCPh)_2$ were reacted with 2 equiv of PCy₂H, dinuclear complexes of the type $m(\mu$ -PCy₂)Pt(CO)(PCy₂H) were obtained. We have generally observed that oxidative addition of the P-H bond of PR2H coordinated to Pt across a metal-metal bond is easier when **R** = Ph than R = Cy. The second method used involved the in situ reaction of a metallophosphine R2P-m(C0) with a **Pt(0)** complex. The terminal phosphine ligand which is trans with respect to the μ -PR₂ bridging ligand appears to be preferentially replaced by an incoming CO ligand. The new complex *Inorg. Ch*
Contribution from the Laboratoc
Quantique, ER 139 CNRS, Univer
and Istituto di Cl
Struttu
do-**Bridged, Heterodi-, Heterotri-, and Istituto di Cl
Struttu
do-Bridged, Heterodi-, Heterotri-, and and Platinum wit** Inorg. Chem. 1992, 31, 399-410

Contribution from the Laboratoire de Chimie de Coordin

ntique, ER 139 CNRS, Université Louis Pasteur, 4 Rue

and Istituto di Chimica Generale ed Inorga:

Strutturistica Diffrattometrica de Inorg. Chem. 1992, 31, 399-410

Contribution from the Laboratoire de Chimie de Coordina

Quantique, ER 139 CNRS, Université Louis Pasteur, 4 Rue

and Istituto di Chimies Generale ed Inorgan

Strutturistica Diffractionnetr *Inorg. Chem.* 1992, 31, 399–410

ribution from the Laboratoire de Chimie de Coordination, UA 416 Cl²

ue, ER 139 CNRs, Université Louis Pasteur, 4 Rue Biaise Pascal, F-

and Istituto di Chimica Generale ed Inorganica,

 $[\{ (CO)_4Mn(\mu-PPh_2)\}_2Pr(PPh_3)]$ (19a) was best prepared and isolated by substitution of the ethylene ligands of $[Pt(C_2H_4)_2(PPh_3)]$
by "Ph₂P-Mn(CO)₄" fragments, generated from Ph₂P-Mn(CO)₅. Crystals of 19a·C₇H₈ are tr 2 in a unit cell of dimensions $a = 13.275$ (5) Å, $b = 17.718$ (6) Å, $c = 11.970$ (3) Å, $\alpha = 94.61$ (2)°, $\beta = 107.89$ (2)°, and γ = **97.74 (2)".** The structure has been solved from diffractometer data by Patterson and Fourier methods and refined by full-matrix least squares on the basis of 6612 observed reflections to $R = 0.0401$ and $R_w = 0.0531$. Although 19a is closely related to its

carbonyl analogue $[(CO)_4Mn(\mu-PPh_2)]_2Pr(CO)$, which has a bent-chain structure, it displays a weak Mn-Mn bonding interaction, thus resulting in a closed rather than an open structure. The triangular metal framework has Pt-Mn distances of **3.082 (1)** and **2.987 (1) A** and an Mn-Mn edge of **3.245 (2)** A. Two phosphido ligands almost symmetrically bridge the Pt-Mn edges, four terminal carbonyl groups are bonded to each Mn atom, and a PPh₃ ligand completes the coordination around the Pt atom. The

3c-4e bonding in 19a has been analyzed by extended Hückel calculations and compared with that in $[{(CO)_aMn(\mu-PPh_2)}_P]$. Pt(CO)]. Heterotetranuclear, bent-chain complexes W-Pt-Pt-W (21) and Mn-Pt-Pt-Mn (22) have been prepared by the reaction of $[PLC1(\mu-PPh_2)(PPh_2H)]_2$ with Na $[\dot{W}(CO)_3Cp]$ or Na $[Mn(CO)_5]$, respectively.

The chemistry of heterometallic complexes stabilized by bridging phosphido groups $(\mu$ -PR₂) continues to attract considerable interest since the first report of such complexes.' It is expected that the nature of the metals and of the substituents R at phosphorus will critically influence the chemistry of these complexes. Whether closed (i.e. with significant bonding interaction between the metals) or open $M-(\mu-PR_2)-M'$ bridge bonds are formed depends on the electronic requirements of the metal-ligand fragments involved.² 9a has been analyzed by extended
or, bent-chain complexes W-Pt-
 h_2H)]₂ with Na [W(CO)₃Cp] or
erometallic complexes stabis
os $(\mu$ -PR₂) continues to attrac
first report of such complexes
of the metals and of the s

We have recently described synthetic routes to complexes containing electron-rich $M-(\mu-PR_2)-M'$ units ($M = Pd$, Pt; M' $= Cr, Mo, W, Mn; R = Ph, Cy)$. They involved the reactions of trinuclear mixed-metal chain complexes of the type *fruns-[M-* ${m(CO)}_2(NCPh)_2$ (M = Pd, Pt; m = Cr(CO)₂Cp, Mo(CO)₂Cp, $W(CO)₂Cp$, $Mn(CO)₄$) with secondary phosphines PR₂H (R = Ph, $Cy)^{3-5}$ or between the metallophosphine Ph₂P-W(CO)₃Cp and platinum(0) complexes.⁶ Herein, we report full details on these reactions and describe their extension to the preparation of new heterometallic complexes. Reactivity studies are presented, and we report the X-ray crystal structure of the new 48e cluster $\frac{1}{2}[(OC)_4Mn(\mu-PPh_2)]_2Pr(PPh_3)]$ (19a), which is characterized by

Results

Synthesis and Characterization of the Complexes. The heterobinuclear complexes **1-6** were prepared by the sequence of reactions outlined in eq 1. First, nucleophilic displacement of the chloride ligands of $PdCl₂(NCPh)₂$ by the carbonylmetalates leads to the thermally labile *trans*- $[Pd(m(CO)]_2(NCPh)_2]$ chain com-

an expanded triangular metal skeleton.

plexes that are kept in solution at ca. -78 °C and not isolated.⁷ **In** situ addition of the secondary phosphine results in oxidative

[†] Laboratoire de Chimie de Coordination, UA 416 CNRS, Université Louis **Pasteur**

¹Laboratoire de Chimie Quantique, ER 139 CNRS, Université Louis Pasteur.

⁸Università di Parma.

⁽¹⁾ Benson, B. C.; Jackson, R.; Joshi, K. K.; Thompson, D. T. *Chem. Commun.* **1968**, 1506.

(a) Garrou, P. E. Chem. Rev. **1985**, 85, 171. (b) Sappa, E.; Tiripicchio,

^{(2) (}a) Garrou, P. E. *Chem. Rev.* **1985,85, 171. (b)** Sappa, E.; Tiripicchio, A.; Braunstein, P. *Coord. Chem. Reu.* **1985,** *65,* **219.** (c) Braunstein, P. *Nouu. J. Chim.* **1986,** *10,* **365. (d)** Braunstein, P. *Mafer. Chem. Phys.* **1991,** *29,* **33.**

addition of the P-H bond across a heterometallic bond and formation of the dinuclear complexes 1-6. For the synthesis of the Fe-Pd complex Sa, the phosphine ligand was added prior to $Fe(CO)_{2}Cp^{-}$ in order to ensure rapid consumption of the very labile Fe-Pd-Fe intermediate. It was generally observed that the reactivity of PPh_2H is greater than that of PCy_2H .⁴ The reactions require 3 molar equivalents of PRzH for completion, and **1-6** were the only phosphido-bridged complexes observed. Preparation of $[(OC)_3Co(\mu\text{-PPh}_2)Pd(PPh_2H)_2]$ by this method failed, owing to decomposition. Attempts to form this complex between -78 °C and room temperature by the reaction of W-Pd 3a with Ph_2P- Co(CO)₄⁸ led instead to Co-Pd 6a, showing that, somewhat surprisingly, metal exchange is preferred here over replacement of the whole metallophosphine moiety. norganic Chemistry, *Vol. 31*, *No. 3*, 1992

1 of the P–H bond across a heterometallic bon

0 of the dinuclear complexes 1–6. For the synth

complex 5a, the phosphine ligand was adde

2Cp⁻ in order to ensure rapid cons

Experimental details and spectroscopic data for all complexes are given in the Experimental Section. As with other phosphido-bridged complexes, the 31P(1H} NMR **data** are very informative. Each complex shows a downfield resonance (doublet of doublets), due to the bridging $PR₂$ ligand, and two other resonances (doublet of doublets and pseudo triplet), due to the chemically inequivalent terminal PR₂H ligands. The large downfield shifts of the bridging ligand by ca. $175-210$ ppm for μ -PPh₂ and ca. 220-290 ppm for μ -PCy₂ are indicative of metal-metal bonding.⁹ This was confirmed by the X-ray **crystal** structure determination of **2a** (Mo-Pd $= 2.916$ (2) Å) and **4a** (Mn-Pd = 2.689 (2) Å).⁵

The m-Pt complexes **7-9** were prepared in **60-70%** yields by using a different method which consisted in the reaction of the metallophosphines $Ph_2P-m(CO)$,^{8,10} generated in situ from Ph_2PCl and $\text{Na}[\text{m(CO)}]$, with the Pt(0) complex $[\text{Pt(C}_2\text{H}_4)(\text{PPh}_3)_2]$ (eq **2).** Analytical and spectroscopic **data (see** Experimental Section)

are again consistent with the structures drawn. In particular, the downfield position of the μ -PPh₂ resonance for 7-9, in the range ca. 150-200 ppm with $^1J[(\mu-P)Pt]$ coupling constants between ca. **2400** and **2800** Hz, implies the presence of a metal-metal bond.⁹ Displacement of the metalloligand Cy₂P-m from $1a-3a$ by ethylene (1 atm, 25 °C, CH₂Cl₂) proved impossible (IR and $31P{1H} NMR$.

- **Blum, T.; Braunstein, P.; Tiripicchio, A.; Tiripicchio Camellini, M. In** *Recent Advances in Di- and Polynuclear Chemistry;* **Braunstein, P., Ed.** *New J. Chem.* **1988,** *12,* **539.**
- **Blum, T.; Braunstein. P.; Tiripicchio, A,; Tiripicchio Camellini,** M. *Organometallics* **1989,** *8,* **2504.**
- (5) Braunstein, P.; de Jésus, E.; Tiripicchio, A.; Tiripicchio Camellini, M. *J. Organomet. Chem.* **1989,** *368,* **C5.**
- **Braunstein, P.; de J&us, E.** *J. Organomet. Chem.* **1989,** *365,* C19.
- **Bender, R.; Braunstein, P.; Jud, J.-M.; Dusausoy, Y.** *Inorg. Chem.* **1983,** (7) **22, 3394 and references cited.**
- **Burt, J. C.; Boese, R.; Schmid, G.** *J. Chem. SOC., Dalton Trans.* **1978, 1387.**
- **(a) Garrou, P. E.** *Chem. Reu.* **1981,** *81,* **229. (b) Carty, A. J.** *Adu.* (9) *Chem. Ser.* **1982,** *No. 196,* **163 and references cited.**
- **(a) Malisch, W.; Maisch, R.; Colquhoun, I. J.; McFarlane, W.** *J. Or*g*anomet. Chem.* **1981**, 220, C1. (b) Adatia, T.; McPartlin, M.; Mays,
M. J.; Morris, M. J.; Raithby, P. R. *J. Chem. Soc., Dalton Trans*. **1989**,
1555. (c) Hayter, R. G. *J. Am. Chem. Soc.* **1964**, 86, 823.

Table I. Percentage of the Cis and Trans Isomers of 10-14 and Related Complexes at Equilibrium, As Determined by "Pl'HJ NMR Spectroscopy

Reference 3.

The m-Pd complexes 10-12 and W-Pt 14 were formed and identified by $31P_1^1H_1$ NMR spectroscopy in CO-saturated

 CH_2Cl_2/C_6D_6 solutions of the corresponding bis(phosphino) complexes la-3a and **7,** respectively (see Discussion). However, mainly the bis(phosphine) complexes were isolated by precipitation from these solutions. Although the Co-Pd complex *6a* did not react with CO under these conditions, 13 was obtained as a byproduct in the preparation of *6a* (eq 1). Complexes 10-12 were formed as an equilibrium mixture of cis and trans isomers with respect to the μ -PCy₂ ligand,⁵ whereas only the cis isomers of 13 and 14 were observed. The stereoselectivity of the reactions and the cis/trans ratios of the products (Table I) were deduced from $31P{1H}$ NMR spectroscopy. The difference in relative stability of the cis and trans isomers of 10-13 clearly **illustrates** the changes in electronic properties of the trans $Cy₂P_{-m}$ fragment when m varies. From the ${}^{31}P{}_{1}^{1}H{}_{3}^{1}NMR$ data at different temperatures, the values of $\Delta H^{\circ} = 7.1 \pm 0.4$ kJ·mol⁻¹ and $\Delta S^{\circ} = 10.5 \pm 1$ $J·mol^{-1}·K^{-1}$ were calculated for the cis-12/trans-12 equilibrium.

When the reaction leading to the Mn-Pd complex 4a was performed with a Pd/Mn/PCy,H ratio of **1:43** instead of **1:23,** the dimanganese complex $Na[Mn_2(\mu-PCy_2)(CO)_8]$ (15a) was isolated as the major product. However, it proved too unstable to characterize fully, and it was converted to the tetrabutylammonium salt $(n-Bu_4N)[Mn_2(\mu-PCy_2)(CO)_8]$ (15b) or to the neutral, hydrido complex $[Mn_2(\mu-H)(\mu-PCy_2)(CO)_8]$ (16)¹¹ (eq 3). Since 1Sa was not observed in the reaction between Na-

(1 1) For the p-PPh, analogue, see: (a) Green, M. L. H.; Moelwyn-Hughes, J. T. *Z. Naturforsch.* **1962,** *178,* **783. (b) Reference 1Oc. (c) Doedens, R. J.; Robinson, W. T.; Ibers, J. A.** *J. Am. Chem. Soc.* **1%7,89,4323.**

 $[Mn(CO),]$, $Mn₂(CO)$ ₁₀ and PCy₂H in THF at room temperature and was formed only in trace amounts in the reaction between Mn-Pd 4a, Na[Mn(CO)₅], and PCy₂H in THF (room temperature, **4** days), its formation appears to involve a Pd-containing intermediate which would then undergo Mn for Pd metal exchange.

When the synthesis of Mn-Pd **4b** was carried out under the same conditions but with a reaction time of 3 days, the new complex **[(OC)4Mn(p-H)(p-PPh,)Pd(p-PPh,)2Mn(CO)4] (17)** was formed in addition and isolated in *ca.* 18% yield (this complex is not detected after short reaction times) *(eq* **4).** Particularly $\frac{1}{2}$. $\frac{1}{2}$. $\frac{1}{2}$. $\frac{1}{2}$. $\frac{1}{2}$. $\frac{1}{2}$.

characteristic are its $^{31}P_1^{11}H_1^{11}NMR$ resonances at δ 140 (dd, $^{2}J(PP)$) $= 272$ and 26 Hz) for the μ -PPh₂ group bridging the Mn-Pd bond and at δ -81 and -101 (complex multiplets) for the phosphido bridges not spanning a metal-metal bond.⁹ The ¹H NMR resonance at δ -11.0 (ddd) is consistent with a hydride bridging a Mn-Pd bond (this resonance was observed at δ -11.1 with $(Pt-H) = 526 Hz$ in Mn₂Pt 20, the Pt analogue of 17).^{12,13}

The platinum analogue of **17** has been previously obtained by the reaction of $Pt(PPh_2Cl_2$ with $Na[Mn(CO)_5]$.¹³ This reaction also yielded $[(OC)_4Mn(\mu-PPh_2)Pt(CO)(\mu-PPh_2)Mn-$ (CO),] **(18),** which has now been prepared in 89% yield by the reaction of *eq* **5.** The formation of **18** nicely extends to the

metallophosphine $Ph_2P-Mn(CO)_5^{10c}$ the procedure previously described for $Ph_2P-W(CO)_3Cp$, which afforded the related bent-chain complex $[CP(OC)_2W(\mu-PPh_2)Pt(CO)(\mu-PPh_2)W$ - (CO) ₂ Cp]⁶

The \dot{R}_2P -m fragment, isolobal with ethylene,^{13,14} coordinates to platinum in a manner reminiscent of that in $PtL(olefin)_2$ complexes. In similarity with the reaction of $[Cp(OC), W(\mu PPh_2)Pt(CO)(\mu-PPh_2)W(CO)_2Cp$] with PPh_3 which afforded the heterodinuclear complex W-Pt **7** via decoordination of the "ethylene-like" fragment $R_2P-W(CO)_2Cp^{15}$ and substitution of **I** 7t i 1950 - 1950 - 1950 - 1950 - 1950 - 1950 - 1950 - 1950 - 1950 - 1950 - 1950 - 1950 - 1950 - 1950 - 1950 - 19

- **(12)** Bars, *0.;* Braunstein, P.; Geoffroy, G. L.; Metz, B. *Organometallics* **1986,5,2021.**
- (13) (a) Braunstein, P.; Matt, D.; Bars, O.; Grandjean, D. Angew. Chem., Int. Ed. Engl. 1979, 18, 797. (b) Braunstein, P.; Matt, D.; Bars, O.; Louer, M.; Grandjean, D.; Fischer, J.; Mitschler, A. J. Organomet. *Chem.* **1981.** *213.* **79.**
- **(14)** (a) Hoffmann. **R.** *Angew. Chem., Int. Ed. Engl.* **1982,** *21,* **711. (b)**
- **(IS)** Malisch, **W.;** Jcrg, **K.;** Hofmockel, U.; Schmeusser, M.; Schemm, **R.;** Stone, **F.** G. **A.** *Angew. Chem., Int. Ed. Engl.* **1984,** *23,* 89. Sheldrick, *W.* **S.** *Phosphorus Sulfur* **1987,** *30,* **205.**

with the atom-numbering scheme.

the Pt-bound CO,⁶ the reaction of Mn_2 Pt 18 with 1 equiv of PPh₃ in THF produced mainly Mn-Pt **8** *(eq* **6).** A byproduct of this

reaction is $\left[\{ (CO)_4 Mn(\mu-PPh_2) \} _2Pt(PPh_3) \right]$ (19a), which becomes the major product when the reaction is performed in toluene **(see** Experimental Section). However, this new complex is best prepared and isolated **(53%** yield) by the reaction of **eq 7.** This latter

reaction formally involves substitution of the ethylene ligands of $[Pt(C₂H₄)₂(PPh₃)]$ by "Ph₂P-Mn(CO)₄" fragments generated from $Ph_2P-Mn(CO)_5$.^{10c} Although 19a only differs from 18 by the nature of the 2e donor ligand bound to Pt, the structures of these complexes are dramatically different, since **1%** was shown by X-ray diffraction to display a Mn-Mn bonding interaction,

thus resulting in a closed rather than an open structure (see below). The cobalt derivatives $[((OC)_3Co(\mu-PPh_2)]_2Pt(CO)]$ and **[{(OC)3Co(p-PPh2))2Pt(PPh3)],** respectively, analogous to **18** or **19a,** could not be isolated by using these methods. Instead, precipitation of **Pt(0)** was observed. 1, No. 3, 1992
n open structure (see below).
 $\log(\mu - PPh_2)$ ₂Pt(CO)] and
ectively, analogous to 18 or
g these methods. Instead,

In contrast to the fragmentation observed with PPh₃ (eq 6), M_n Pt 18 instantaneously reacted with PR₂H (R = Cy, Ph) in toluene to produce **19b** and **19c,** respectively, which were characterized spectroscopically **(see** Experimental Section). It thus appears that the reactivity of **18** largely depends upon the steric properties of the entering phosphine. Monitoring of the reaction by ³¹P[¹H] NMR spectroscopy showed no change of the typical resonances of **1%** in toluene after **12** h, whereas **1%** transformed *x* pical
r med
I m(*u*-

after 3 h (see Experimental Section) to produce $[(OC)_4Mn(\mu H(\mu$ -PPh₂)Pt(μ -PPh₂)₂Mn(CO)₄] (20),¹³ the known platinum analogue of **17** *(eq* 8).

We also prepared the tetranuclear, bent-chain complexes W-Pt-Pt-W **(21)** and Mn-Pt-Pt-Mn **(22)** *(eq* **9)** by the method

2l m=W(CO)&p 22 m-Mn(CO)4

recently used when $m = Mo(CO)₂CP.⁴$ Complex 22, now isolated in **56%** yield, has previously been obtained in lower yield from the reaction of $Pt(PPh₂Cl₂$ with $Na[Mn(CO)₅]$ and fully characterized by X-ray diffraction.¹³ On the basis of the spectroscopic similarities between **21** and its structurally characterized $Mo₂Pt₂$ analogue,⁴ we assume a similar structure for these tetranuclear chain complexes, which appear to display various conformations in solution.⁴ In particular, the ¹H NMR spectrum of the major conformer of **21** contains a multiplet resonance at δ -8.87 with ¹J(HPt) = 505 Hz (cf. δ -8.70 with ¹J(HPt) = 540 Hz in $[\text{Cp}(\text{OC})_2\text{Mo}(\mu\text{-}H)(\mu\text{-}PPh_2)\text{Pt}(\mu\text{-}PPh_2)]_2$), consistent with

a (semi) bridging hydride ligand.^{12,16} Its ³¹P{¹H} NMR spectrum contains a set of resonances at low field, centered around 6 **1 12,** attributed to a μ -PPh, unit bridging a W-Pt bond, and a second set at δ -139, assigned to a μ -PPh₂ unit connecting two nonbonded Pt atoms (cf. the corresponding multiplets at δ 152 and -123 in **I** *^I*

 $[Cp(OC)₂Mo(\mu-H)(\mu-PPh₂)Pt(\mu-PPh₂)]_{2}.$

The reactions of *2a,* **2b,** and **3a** which afforded complexes **23a,**

 $PR₂H$ and oxidative addition of $PPh₂Cl$ across the m-Pd bond. However, these products could not be isolated analytically pure, owing to contamination with $[m(\mu-PR_2)(\mu-H)PdCl(PR_2H)]$.¹ which resulted from the reaction of **2a-3a** with some HCl present in PPh₂Cl. *H*)],¹⁷
resent
An(μ -PR₂H and oxidativ
However, these pro
owing to contamin
which resulted from
in PPh₂Cl.
Description of
PPh₂)}₂Pt(PPh₃)}-
 $[3(OC)$.Mn(u-PPh

Description of the Crystal Structure of $[(OC)_4Mn(\mu \text{PPh}_2$)}₂ $\text{Pt}(\text{PPh}_3)$ }C₇H₈</sub> (19a·C₇H₈). Heterotrinuclear clusters $[((OC)_4Mn(\mu-PPh_2)]_2Pt(PPh_3)]$ and toluene molecules of solvation, separated by normal van der Waals contacts, are present in the **crystals.** A view of the structure is shown in Figure **1** together with the atom-numbering scheme. Selected bond distances and angles are given in Table **11.** The metals adopt a triangular arrangement, at variance with the previously **known** linear or bent Mn_2 Pt chains.¹⁸ This triangle is characterized by Mn-Pt edges of **3.082 (1)** and **2.987 (1)** and a Mn-Mn edge of **3.245 (2) A.** Two phosphido ligands bridge the Pt-Mn bonds almost **sym**metrically, four terminal carbonyl groups are bonded to each Mn atom, and a PPh₃ ligand completes the coordination of the Pt atom. If the Mn-Pt bonds are ignored, the coordination geometry around Mn is pseudooctahedral and that of Pt is trigonal planar. The bridging P(2) and **P(3)** atoms lie on opposite sides with respect to the metal triangle and form dihedral angles of **36.2 (1)** and 27.3 (1)^o with it, whereas P(1) is practically coplanar, deviating only by **0.063 (2) A.** The Mn-Pt distances are much longer than those reported for complexes containing a Mn-Pt metal-metal bondi8 (in the range **2.602-2.847 A,** from the Cambridge Crystallographic Data Centre). In particular, the Mn-Pt distances found in the $Mn(\mu-PPh_2)$ Pt moieties constituting clusters 18, 20, and $[Mn_2Pt_2(\mu\text{-}PPh_2)_4(CO)_8]$ were found in the range 2.710 $(2)-2.847$ (2) \AA ¹³ The Mn-Mn distance is much longer than for an unsupported metal-metal single bond, e.g. in $[Mn_2(CO)_{10}]$ $(2.895 \text{ (1) } \text{\AA})$,¹⁹ or in $[\text{Mn}_2(\mu-\text{H})(\mu-\text{PPh}_2)(\text{CO})_8]$ (2.937 (5) Å), where a symmetric, bent, three-center, two-electron bond between $Mn-H-Mn$ was suggested.^{11c}

From a chemical point of view, the **48e** complexes **18** and **19a** only differ by the nature of the **2** electron donor ligand bound to Pt, CO vs PPh₃. Steric hindrance prevents the PPh₃ ligand from occupying the position of the Pt-bound carbonyl in **18.** This in turn induces a closing of the Mn-Pt-Mn angle, from 159.6 (1)^o in 18^{13a} to 64.61 (4)^o in 19a. The two Mn-Pt distances are also significantly different in these clusters: 2.741 (1) and 2.747 (1) significantly different in these clusters: **2.741 (1)** and **2.747 (1) A** in **18** and **2.987 (1)** and **3.082 (1) A** in **1%.** In order to delineate better the electronic and steric **reasons** for these dramatic structural

- **(a) Bars, 0.; Braunstein, P.; Jud,** J.-M. *Noun J. Chim.* **1984, 8, 771** and references cited. (b) Powell, J.; Sawyer, J. F.; Shiralian, M. Or-
ganometallics 1989, 8, 577. (c) Kunz, E.; Muller, J.; Schubert, U. J.
Organomet. Chem. 1987, 320, C11.
- **Martin, M.; Rees, B.; Mitschler, A.** *Acta Crystallogr., Sect. B* **1982, 38, 6.**

^{(16) (}a) Powell, J.; Sawyer, J. F.; Smith, S. J. J. Chem. Soc., Chem. Com-
mun. 1985, 1312. (b) Powell, J.; Sawyer, J. F.; Gregg, M. R. J. Chem.
Soc., Chem. Commun. 1984, 1149.

⁽¹⁷⁾ Braunstcin, P.; de JCus, E.; Tiripicchio, A.; Ugozzoli, F. *Inorg. Chem.,* **following paper in this issue.**

Table **II.** Selected Bond Distances (A) and Angles (deg) for $19a$ C₂H₂

3.082(1)	$Pt-Mn(2)$	2.987(1)
3.245(2)	$Pt-P(2)$	2.299(2)
2.248(2)	$Pr-P(3)$	2.283(2)
2.290(2)		2.310(2)
1.844(8)	$Mn(2) - C(5)$	1.835(8)
	$Mn(2) - C(6)$	1.781(9)
1.835(8)	$Mn(2) - C(7)$	1.828(8)
1.843(9)	$Mn(2) - C(8)$	1.853(9)
1.820(7)	$C(1) - O(1)$	1.15(1)
	$C(2) - O(2)$	1.14(1)
1.818 (8)	$C(3)-O(3)$	1.13(1)
1.823(7)	$C(4)-O(4)$	1.15(1)
1.824(7)	$C(5)-O(5)$	1.15(1)
1.834 (8)	$C(6)-O(6)$	1.16(1)
		1.14(1)
		1.15(1)
64.61 (4)	$P(2) - Pt - P(3)$	154.33 (8)
101.64 (8)	$Pt-Mn(1)-Mn(2)$	56.28(4)
103.29 (9)	$Pt-Mn(2)-Mn(1)$	59.11 (4)
97.25 (8)		103.84(7)
		88.8 (3)
		84.3 (3)
		95.5 (3)
	$C(5)-Mn(2)-C(6)$	93.5 (4)
		91.2 (4)
		91.7(4)
		99.5 (4)
		85.5 (4)
		78.0 (2)
		80.1(3)
		88.7 (3)
		81.1(1)
		122.5(2)
		116.9(2)
		113.6(2)
		118.8(3)
		103.8(4)
	1.799(9) 1.824(8) 1.839(7) 89.9 (2) 91.5(3) 88.4 (3) 96.2(4) 89.0 (4) 91.6(4) 90.5(4) 92.3(4) 93.6(3) 79.8 (3) 80.0(3) 84.4 (1) 120.8(2) 116.6(2) 118.7(2) 116.7(2) 100.8(3)	$Mn(2)-P(3)$ $C(7)-O(7)$ $C(8)-O(8)$ $P(3)$ –Mn(2)–Mn(1) $P(3)-Mn(2)-C(5)$ $P(3)-Mn(2)-C(6)$ $P(3)-Mn(2)-C(8)$ $C(5)-Mn(2)-C(7)$ $C(6)-Mn(2)-C(7)$ $C(6)-Mn(2)-C(8)$ $C(7)-Mn(2)-C(8)$ $C(5)-Mn(2)-Mn(1)$ $C(7)-Mn(2)-Mn(1)$ $C(8)-Mn(2)-Mn(1)$ $Mn(2)-P(3)-Pt$ $Pt-P(3)-C(39)$ $Pt-P(3)-C(45)$ $Mn(2)-P(3)-C(39)$ $Mn(2)-P(3)-C(45)$ $C(39)-P(3)-C(45)$

changes, extended Hiickel calculations have been performed that are detailed below. Two limiting bonding descriptions for **19a** are depicted in A and B. They involve a 16e Pt center and two

 $2e-2c$ Mn-Pt bonds or a 18e Pt center and three $2e-3c$ metalmetal bonds, respectively. For geometric and electronic reasons, we favor the bonding description shown in C, which involves a 16e Pt and three 4e-3c metal-metal bonds. Such a bonding is reminiscent of that encountered in the 44e cluster $[Pt_3(\mu PPh₂$ ₃Ph(PPh₃)₂], which has 4 metal-metal bonding electrons and for which energetically comparable solid-state structures are known, with either 'two short and one very long" or three "medium" metal-metal distances, as a result of metal core isomerism.20

Extended Hückel Calculations. These calculations^{21,22} have been

- (a) Bender, R.; Braunstein, P.; Tiripicchio, A.; Tiripicchio Camellini, M. Angew. Chem., Int. Ed. Engl. 1985, 24, 861. (b) Bender, R.; Braunstein, P.; Dedieu, A.; Sappa, E.; Tiripicchio, A.; Huggins, B.; Ellis, (20) **P.** D. Submitted for publication in *Inorg. Chem.* (a) Hoffmann, **R.** *J. Chem. Phys.* 1963,39, 1397. (b) Hoffmann, **R.;**
- Lipscomb, W. N. *Ibid.* 1962, *36,* 3179; *Ibid.* 1962, 37, 2872.
- *Computational derails:* The parameters used in the extended Hiickel calculations for **Pt** and Mn were taken from ref 23. The modified Wolfsberg-Helmolz formula2' was used throughout this work. The geometries were taken from the experimental ones **(see** ref 13 and this work).
- Summerville, R. H.; Hoffmann, R. *J. Am. Chem. Soc.* 1976, 98, 7240.
Ammeter, J. H.; Bürgi, H. B.; Thibeault, J. C.; Hoffmann, R. *J. Am.*
Chem. Soc. 1978, 100, 3686. (24)

Figure 2. Partial interaction diagram illustrating the interactions shown in IVa-VIa for $L = PH_3$.

carried out on the $[(CO)_4Mn(\mu-PH_2)]_2PtL$] systems $(L = PH_3,$ CO) in both geometries I and 11. I, which we will call trans

according to the respective arrangement of the Mn-Pt-Mn unit, stands as a model for 18 (when $L = CO$). Its cis counterpart II is representative of 19a when $L = PH_3$. Note that the schematic drawings I and II stress on purpose their isolobal analogy^{13,14} with the Pt(C_2H_4)₂L (L = PH₃, CO) system III, the valence orbitals

of which will be analyzed first. These orbitals are much like the known valence orbitals of the $Ni(C_2H_4)_2L$ analogue.²⁵ They can be derived from the interactions of the π and π^* orbitals of the two ethylene ligands with the appropriate **s,** p, and d orbitals of the platinum atom. These interactions are shown in IVa-VIa for $L = PH₃$ and materialized on the partial interaction diagram of Figure 2. We denote π_s and π^* , the in-phase combinations of the π and π^* orbitals of the two C₂H₄ ligands. Similarly, π_a and π^* _a refer to the corresponding out-of-phase combinations. In IVa

⁽²⁵⁾ McKinney, **R.** J.; **Thorn,** D. L.; Hoffmann, **R.;** Stockis, A. *J. Am. Chem. Soc. 1981,103,* 2595.

the sp platinum hybrid *stabilizes* the π_s and-but to a lesser extent $-\pi^*$, combinations. Va is also a 2-electron *stabilizing* interaction between π^* , and $d_{x^2-y^2}$, somewhat destabilized by a small repulsive interaction with the doubly occupied π_s combination. VIa is a 4-electron *destabilizing* interaction between d_{xy} and π_a , but the destabilization is weakened by the mixing with the empty π^* combination. Two special features deserve a comment: First, the 2-electron interaction IVa, which was not important in the nickel system, now becomes highly involved in the bonding pattern. Next, the weights of the mixing of π_s , π^* _s, π_a , and π^* _a with sp, $d_{x^2-y^2}$, and d_{xy} will depend on the value of the α angle (see III for the definition of α). For instance, when α is decreased from 120 to 90°, the mixings between sp and π_s in VIa
IVa, between d_{x²y} and π^* _s in Va, and between d_{xy} and π_a in VIa become less important. On the other hand, the respective contribution of π^* _s, π_s , and π^* _a increases. VIa is therefore less destabilizing, but this does not compensate the decrease of the stabilizing interactions in IVa and Va and the whole system is destabilized. For angles greater than 120°, the repulsion between the two ethylene ligands leads also to an overall destabilization, so that an optimum value for α is found around 115-120°.

A first result obtained from the EH calculations on the bis- (ethylene) carbonyl and phosphine complexes is that the carbonyl system is intrinsically more stable than the phosphine system by about 0.52 eV (50.1 kJ·mol⁻¹).²⁶ This is essentially traced to the changes which are undergone in our model system by d_{xy} and $d_{x^2-y^2}$. When CO is substituted by PH_3 , the π back-donation process leads to a delocalization of the d_{xy} orbital onto the π^*_{CO} orbital. The overlap of d_{xy} with π_a therefore decreases (from 0.052 to 0.038), and the corresponding destabilizing interaction with π_a (see VIa) is weakened²⁷ (the destabilization achieved in VIa is decreased by 0.18 eV). In addition the $d_{x^2-y^2}$ orbital is destabilized more in the carbonyl complex.²⁸ As a result, its capacity to interact in a bonding way with π^* _s (see Va and Figure 2) is increased (the stabilization achieved in Va is increased by 0.16 eV).

Similar interactions in IVa-VIa are found when the ethylene ligands are replaced by two $[(CO)_4Mn-PH_2]$ entities. But the strong polarization of the π and π^* orbitals of $[(CO)_4Mn-PH_2]$ (which is due to the electronegativity difference between $Mn(CO)₄$

and PH₂) now orients the stereochemistry of the trimetallic system. As shown in VII, the π orbital is localized on the more electro-

negative PH₂ group, whereas its π^* counterpart (see VIII) is highly metallic in character. The interactions sketched in IVa-VIa for $Pt(C₂H₄)₂L$ therefore become IVb-VIb for the trans isomer I and

IVc-VIc for the cis isomer 11. It is first clear that the 2-electron stabilizing interaction between the sp hybrid and π_s is much greater in IVb than in IVc. Vb is also a stronger stabilizing interaction than Vc. **On** the other hand, VIb is somewhat more destabilizing than VIc but the two first interactions prevail and the overall preference is for the trans isomer I. Note here that for the cis isomer 11, Vc and VIc have no appreciable component on the phosphido group. This arises from the localization of the π orbital of $[(CO)_4\overline{M}n-PH_2]$: Thus, in Vc the mixing of π_s into $d_{x^2-y^2}$ + π^* _s is much stronger than in Va and this leads to the disappearance of the phosphido component. Moreover the bending back of the equatorial CO ligands in the Mn(CO)₄ group increases the overlap of π^* , (which is localized mainly on the Mn atom) with $d_{x^2-y^2}$. of π^* , (which is localized mainly on the Mn atom) with $d_{x^2-y^2}$.
In VIc, the major component of π_a would point toward the nodal plane of d_{xy}^2 ²⁹ It has almost no interaction with this orbital, and VIc is therefore essentially a $d_{xy} + \pi^*$ combination.

Having established the intrinsic preference for the trans geometry, one may therefore wonder about the reasons behind the observed cis geometry when L is a phosphine ligand. We trace this preference to the steric repulsion which would arise, in the trans geometry, between the phosphine ligand on the Pt atom and two in-plane carbonyl ligands (one on each Mn atom): the calculated repulsion between two carbonyls and one phosphine with a geometry corresponding to the trans geometry amounts

⁽²⁶⁾ This value is obtained as the difference between the interaction energies

of LPt (L = PH₃, CO) with two ethylenes to give Pt(C₂H₄)₂L.
(27) The interaction of d_{xy} with π^*_{CO} of course stabilizes d_{xy} , which should
then interact more with π_a , but the overlap factor (which is p

better σ donor than the PH₃ model ligand (the corresponding lone-pair energies are -13.37 and -14.34 eV). One should be aware however that **the experimental proton affinities in the gas phase show that, as ex**pected, PH₃ is more basic than CO (the proton affinities are 197 and 145 kcal/mol, respectively. PPh₃ is found even more basic, its proton affinity amounting to about 230 kcal/mol).

⁽²⁹⁾ This is perhaps not apparent from the *schematic* drawing of VIc but can be easily seen in Figure 1 from the disposition of the $[(CO)_4Mn-PH_2]$ **unit around the Pt atom.**

Phosphido-Bridged Complexes of Pd and Pt

to 2.02 eV (195 kJ-mol⁻¹). The trimetallic system therefore adopts the *cis* geometry 11. *As* said before, this geometry is characterized by the Vc interaction. Vc is nothing else than a 3-center-4-electron interaction between the three metal atoms. It is this interaction which accounts for the lengthening of the Pt-Mn bond **in** I1 with respect to I.

Discussion

The synthesis of phosphido-bridged heterometallic complexes of palladium or platinum with transition metals has **been** achieved by using two different approaches. In the first case *(eq* l), the trinuclear mixed-metal chain complexes trans- $Pd{m(CO)}$,- $(NCPh)_2$] (m = Cr(CO)₂Cp, Mo(CO)₂Cp, W(CO)₂Cp, Mn- $(CO)₄$) were reacted with 3 equiv of secondary phosphines $PR₂H$ $(R = Ph, Cy)$, and this afforded the complexes $m(\mu - PR_2)Pd$ - $(PR₂H)₂(1-6)$ (in the case where m = W(CO)₂Cp, we observed

that **2** equiv of PCy2H mostly afforded **3a** and small amounts of **12**). The reaction of the corresponding platinum complexes *trans*-[Pt{m(CO)}₂(NCPh)₂] (m = Mo(CO)₂Cp, W(CO)₂Cp) with 1 or 2 equiv of PPh₂H has previously yielded trinuclear $\lceil m(\mu - \frac{1}{2}) \rceil$ *trans*-[Pt{m(CO)}₂(NCPh)₂] (m = Mo(CO)₂Cp, W(CO)₂Cp) with 1 or 2 equiv of $PPh₂H$ has previously yielded trinuclear $[m(\mu-$ 1 or 2 equiv of PPh₂H has previously yielded trinuclear $[m(\mu-PPh_2)Pt(CO)(\mu-PPh_2)m]$ (related to 18) and tetranuclear het-
erometallic complexes $[m(\mu-PPh_2)Pt(\mu-PPh_2)]_2$ and $[m(\mu-PPh_2)Pt(H)(\mu-PPh_2)]_2$ (related to 21).⁴ Whe erometallic complexes $[m(\mu-PPh_2)Pt(\mu-PPh_2)]$, and $[m(\mu-PPh_2)Pt(\mu-PPh_2)]$ $PPh_2)Pt(H)(\mu-PPh_2)]_2$ (related to 21).⁴ When the chain complexes trans-[Pt{m(CO)}₂(NCPh)₂] were reacted with 2 equiv of PCy,H, they afforded inter alia dinuclear complexes of the type $m(\mu$ -PCy₂)Pt(CO)(PCy₂H).³ We have generally observed that oxidative addition of the P-H bond of PR_2H coordinated to Pt is much easier when $R = Ph$ than $R = Cy$. This is particularly notable in the transformation shown in *eq* **8,** which does not take place with $R = Cy$ in place of Ph. No further phosphido bridge was formed when a toluene solution of Pd-W **3a** was refluxed overnight (IR and ${}^{31}P{}_{1}{}^{1}H{}_{1}$ NMR), consistent with the stability of the terminal P-H bond but ruling out the thermal synthesis of tri- or tetranuclear derivatives (e.g. a Pd analogue of **21).** It has been noted before that PPh₂H is more reactive than PCy₂H when coordinated to a $W(CO)$, fragment.³⁰ blexes of Pd and Pt

The trimetallic system therefore adopts

Table III. Data for

before, this geometry is characterized CO-Saturated CH₃

before, this geometry is characterized CO-Saturated CH₃

ce metal atoms. It i Phosphido-Bridged Complexes of Pd and Pt
 α 2.02 eV (195 kJ-mol⁻¹). The trimetallic system therefore adopted be eis geometry II. As said before, this geometry is characterized be the signent proper be content to the

The second approach used to generate phosphido-bridged heterometallic complexes involves the reaction of a metallophosphine $R_2P-m(CO)$, prepared in situ, with a $Pt(0)$ complex **(eqs 2** and **5).** The dinuclear complexes **7-9** are analogous to the palladium compounds **1-6.** In both cases, the terminal phosphine ligand which is trans with respect to the μ -PR₂ bridging ligand appears to be preferentially replaced by an incoming CO ligand. This substitution reaction often leads to a thermodynamic mixture of isomers, in which that with a cis-P-M- $(\mu$ -PR₂) arrangement is always the major one or even the only isomer in the case of Co-Pd **13** and W-Pt **14.** Complex **14** has also been previously reported as the cis isomer with respect to the P-Pt- $(\mu-P)$ arrangement.^{16a} It is interesting that the related complex Cp- $(OC)_2W(\mu-PCy_2)Pt(CO)(PCy_2H)$ exists as a mixture of cis netallic complexes involvine $R_2P-m(CO)$, prepare
ine $R_2P-m(CO)$, prepare
nnd 5). The dinuclear com
um compounds 1–6. In bo
which is trans with respect
to be preferentially repla
bstitution reaction often lear
ays the majo **If NMR), consistent with the stability**
 II} NMR), consistent with the stability

d but ruling out the thermal synthesis

rivatives (e.g. a Pd analogue of 21). It

at PPh₂H is more reactive than PCy₂H
 $V(CO)$, frag

(major) and trans (minor) isomers. 3

Some reactions reported here may be viewed as exchanges of

apical fragments in the $M(\mu$ -PR₂)m triangles. Thus, in the reaction of W-Pd 3a with Ph₂P-Co(CO)₄, which leads to Co-Pd $6a$, $W(CO)₂Cp$ is replaced by $Co(CO)₃$, and in the preparation of Mn_2 **15a** from Mn-Pd **4a** and $[Mn(CO)_5]$, a PtL₂ moiety is replaced by $Mn(CO)₄$.

Formation of Mn₂Pd 17 by the reaction of eq 4 is most likely to proceed by an oxidative-addition reaction of the HMn(CO), present *(eq* **1)** to Mn-Pd **4b.** That this reaction was not observed with the μ -PCy₂ derivative **4a** is in agreement with PPh₂H being more reactive than PCy_2H . Furthermore, it only took place for $m = Mn(CO)₄$ (no equivalent of 17 has been observed with other m moieties), illustrating how changing a metal (here in m) in a bimetallic complex of type **1-6 can** influence the reactivity at the adjacent metal center (here Pd).

Table 111. Data for Substitution of a Phosphine by CO in CO-Saturated CH2CI2/C6D6 Solutions of Complexes 1-7, As Determined by 3'Pl'HJ NMR Spectroscopy

It is noteworthy that the designed synthesis of trinuclear, phosphido-bridged mixed-metal chain complexes such as Mn₂Pt **18** is not always straightforward. Thus, for example, previous attempts to prepare molecules containing the moiety $Fe(\mu PPh_2)Rh(\mu-PPh_2)Fe^{31}$ or $Fe(\mu-PMe_2)Ni(\mu-PMe_2)Fe^{32}$ led instead to different molecules. However, the use of carbyne bridges has **proven** very successful for the stabilization of heterotrinuclear chain $complexes.³³$

When the electron-counting convention of assigning zero oxidation states to all atoms is adopted, the μ -PR₂ ligands are net 3-electron donors and the metal centers in m and $M = Pd$ and Pt achieve 18e and 16e configurations, respectively, in all the complexes reported here.

Phosphine and Carbonyl Exchange in the Platinum Coordination Sphere. The m-Pd complexes **la-3a** and W-Pt **7** rapidly established equilibrium with **10-12** and **14,** respectively, when dissolved in CO-saturated CH_2Cl_2/C_6D_6 solutions (³¹P(¹H) NMR monitoring) (Table 111). In contrast, formation of carbonyl complexes was not **observed** for Mn-Pd **4a,** Co-Pd *6a,* and 2b-4b. In the case of Co-Pd **6a,** a high activation energy barrier toward substitution may account for this behavior, consistent with the carbonyl complex **13** (obtained as a byproduct in the synthesis of *6a)* requiring ca. 10 h to be converted to *6a* upon addition of phosphine. For **4a** and **2b-4b,** the instability of the carbonyl complex with respect to the phosphine complex is a more plausible reason, as confirmed in the case of Mn-Pd **4b.** Thus, in the presence of CO, the phosphine ligands of **4b** undergo rapid exchange, as indicated in the ³¹P $\{^1H\}$ NMR spectrum in toluene- d_8

⁽³¹⁾ Haines, R. J.; Steen, N. D. C. T.; English, R. B. *J. Chem. SOC., Dalton Trans.* **1983, 1607.**

⁽³²⁾ Keller, E.; Vahrenkamp, H. Chem. Ber. 1981, 114, 1124. See also:

Keller, E.; Vahrenkamp, H. Ibid. 1979, 112, 2347.

(33) See for example: (a) Carriedo, G. A.; Howard, J. A. K.; Marsden, K.;

Stone, F. G. A.; Woodwar **(c) Dossett, S. J.; Hill, A. F.; Howard, J. A. K.; Nasir, B. A.; Spaniol, T. P.; Sherwood, P.; Stone, F. G. A.** *Ibid.* **1989, 1871. (d) Davies,** *S.* **J.; Howard, J. A. K.; Pilotti. M. U.; Stone, F. G. A.** *J. Chem. Soc., Chem. Commun.* **1989, 190.**

 $(\mu$ -PPh₂)Pd(PPh₂H)₂] (4b) in toluene- d_8 solutions in the presence of (a) CO or (b) **free** PPhzH.

by the coalescence of their signals at ca. -15 **"C** and the replacement of the doublet of doublets for the μ -PPh₂ by a singlet (Figure 3a). Below this temperature, only the signals of Mn-Pd **4b** were observed, suggesting that the carbonyl complex is only an unstable intermediate in the phosphine exchange **process.** Table I11 summarizes the kinetic and thermodynamic influences of the R_2P -m fragment on the platinum or palladium coordination sphere. The M-CO bond appears more stable for platinum than for palladium, for **Cr,** Mo, or W than for Mn, and for R = cyclohexyl more than for phenyl complexes.

In order to better understand the labilization of the Pt-L bonds in Mn-Pd **4b,** we monitored by 31P{1HJ NMR spectroscopy the behavior of toluene- d_8 solutions of this compound in the presence of variable concentrations of free phosphine at variable temperatures. As in the case of CO, rapid exchange between free and coordinated phosphines was observed. At higher temperatures (Figure 3b), only one signal for the μ -PR₂ and another for the PPh2H ligands were observed. At low temperatures, the **spectrum** contained two independent sets of signals, corresponding to 4b and free phosphine, respectively. The coalescence temperature (Table IV) decreases when the phosphine concentration **increases,** clearly indicating that the exchange rate increases and that the substitution mechanism is of the associative type.

This equivalencing phenomenon of the phosphine ligands is related to the cis-trans isomerization of L_2PtX_2 complexes catalyzed by free ligand.³⁴ The proposed associative mechanism

Table IV. Coalescence Temperatures for the PPh₂H and μ -PPh₂ Signals in the ³¹P[¹H] NMR Spectra of 5×10^{-2} mol·L⁻¹ Solutions of **4b** in the Presence of Variable Concentrations of Free Phosphine

concn of PPh ₂ H.	coalescence temp, K		concn of PPh ₂ H ₁	coalescence temp, K	
10^{-3} mol $\cdot L^{-1}$	PPh_2H <i>u</i> - PPh_2		10^{-3} mol-L ⁻¹		$PPh_2H \mu$ - PPh_2
	>310	283	57	216	198
23	243	218	215	212	190

proceeds through pentacoordinate transition states. Three pathways have been proposed as illustrated in *eq* 11, where the

parallel with our system is shown for the more related pathways 2 and 3. The coalescence of the signals for free and coordinated phosphines indicates that pathway 3, which implies exchange between these ligands, has a rate constant of the same order as the overall exchange process. In turn, for the concentrations studied, the overall rate constant is on the order of the 31P NMR time scale.

Experimeatal Section

A. Reagents and General Techniques. All reactions were performed in Schlenk-type flasks under nitrogen. Solvents were dried and distilled under nitrogen: diethyl ether and tetrahydrofuran from sodium benzophenone ketyl; toluene, pentane, and hexane from sodium; dichloromethane over P₂O₅; acetone over CaCl₂. Nitrogen *(Air Liquide R grade)* was passed through BASF R3-11 catalyst and molecular sieve columns to remove residual oxygen and water. CO was purchased from Air Liquide (N 20) and **used** without further purification. Unless otherwise stated, reagents were obtained from commercial sources and used as received. Elemental analyses (C, H, and N) were performed **by** the Service Central de Microanalyses du CNRS. Infrared spectra were recorded in the region 4000-400 cm⁻¹ on a Perkin-Elmer 398 spectrophotometer, and the data are given in cm⁻¹. The ¹H, ¹³C, and ³¹P NMR spectra were recorded at 200.13, 50.32, and 81.02 MHz, respectively, on a FT-Bruker WP 200 SY instrument. Chemical shifts, in ppm, are positive downfield relative to external Me_aSi for ¹H and ¹³C and to external 85% H₃PO₄ in H₂O for ³¹P NMR spectra; coupling constants are in Hz. The ¹H NMR signals of the Cy and Ph groups are not given. n dur system is snown for the more related pathways
of the coalescence of the signals for free and coordinated
indicates that pathway 3, which implies exchange
is eigands, has a rate constant of the same order as
exchange

B. Syntheses. $[PdCl_2(NCPh)_2],$ ³⁵ $[PdCl(\mu-PPh_2)(PPh_2H)]_2$,³⁶ $[Pt-$ (COD)₂], [Pt(C₂H₄)₂(PPh₃)],³⁷ [Pt(C₂H₄)(PPh₃₎₂],³⁸ [PtCl(µ-PPh₂)-
(PPh₂H)]₂,³⁹ Na[Cr(CO)₃Cp].2DME, Na[Mo(CO)₃Cp].2DME, and $Na(W(CO)₃CD)₂CDME^{7,40}$ were prepared according to literature methods. Solutions of Na[Fe(CO)₂Cp],⁴¹ Na[Co(CO)₄],⁴² and Na[Mn(C- 0)₅]⁴³ were prepared by Na/Hg reduction of THF solutions of [Fe₂- $(\widehat{CO})_4\text{Cp}_2$], $[\widehat{CO}_2(CO)_8]$, and $[\widetilde{Mn}_2(CO)_{10}]$, respectively. The synthesis and spectroscopic data for **7** have been reported elsewhere.⁶

 $[Cp(OC)_2Cr(\mu-PCy_2)Pd(PCy_2H)_2]$ (1a). The procedure is similar to that detailed below for **3a**. Addition of Na[Cr(CO)₃Cp]-2DME (3.600 at -78 °C produced a green solution that became orange after addition g, 8.90 mmol) in THF (60 mL) to $[PdCl_2(NCPh)_2]$ (1.707 g, 4.45 mn

- Hartley, F. R. *Organomet. Chem. Rev., Sect. A* **1970,** *6,* **119.** (35).
- Hayter, R. **G.** *J. Am. Chem. SOC.* **1962,** *84,* **3046.** The product was recrystallized from dichloromethane/acetone in place of benzene.
- (a) Green, M.; Howard, J. A. K.; Spencer, J. L.; Stone, **F.** G. A. *J. Chem. Soc., Dalton Trans.* **1977,271.** (b) Spencer, J. L. *Inorg. Synth.* (37) **1979,** *19,* **213.**
- Blake, D. M.; Roundhill, D. M. *Inorg. Synrh.* **1978,** *18,* **120.** (38)
- (39)
- Brandon, J. B.; Dixon, **K.** R. *Can. J. Chem.* **1981,** *59,* **1188.** Bender, R.; Braunstein, *P.;* Jud, J.-M. *Inorg. Synth.* **1989,** *26,* **341.** (40)
- Fischer, E. **0.;** BBttcher, R. *Z. Naturforsch.* **1955,** *!OB,* **600.** Pearson, R. **G.;** Dehand, J. *J. Organomet. Chem.* **1968,** *16,* **485.** (41)
- (42)
- Hieber, W.; Wagner, G. *Z. Naturforsch.* **1958,** *B13,* **339.** (43)

^{(34) (}a) Verstuyft, A. W.; Cary, L. W.; Nelson, J. H. *Inorg. Chem.* 1976, 15 , 3161 and references therein. (b) MacDougall, J. J.; Mathey, F.; Nelson, J. H. *Inorg. Chem.* 1980, 19 , 1400 and references therein. (c) Ma **2145.**

of PCy,H (2.93 mL, 13.35 mmol) and having reached room temperature. The product (2.58 g, 66.8%) is a red solid, which is sparingly soluble in hexane, acetone, or methanol and should be stored under an inert atmosphere (mp 195 °C dec). Anal. Calcd for C₄₃H₇₃CrO₂P₃Pd *(M_r* = 873.38): C, 59.13; H, 8.42. Found: C, 59.42; H, 8.35. IR (KBr): NMR (CH₂Cl₂/C₆D₆): δ 285.9 (dd, 1 P, *µ*-PCy₂, ²J(PP) = 121 and 39), 9.7 (d, 1 P, PCy₂H trans to PCy₂, $J(PP) = 121$, from ³¹P NMR, ¹ $J(PH)$ = 291), 7.0 (d, 1 P, PCy₂H cis to PCy₂, ² $J(PP) = 39$, from ³¹P NMR, $J(PH) = 273$. $\nu(CO)$ 1870 vs, 1802 vs. IR (CH_2Cl_2) : $\nu(CO)$ 1861 vs, 1786 vs. ¹H NMR (C₆D₆): δ 4.97 (s, 5 H, Cp), 4.37 (dm, 2 H, PCy₂H). ³¹P{¹H} Bridged Complexes of Pd and Pt

33 mL, 13.35 mmol) and having reached room temperature.

1.56 in 2.58 g, 66.8%) is a red solid, which is sparingly soluble in

PCy₂

1.95 °C dec). Anal. Calcd for C₄₃H₇₅Cr₂P₂Pd

 $[Cp(OC)₂Mo(\mu-PCy₂)Pd(PCy₂H)₂]$ (2a). The same method as for **3s** was employed, using [PdCl,(NCPh),] (2.461 g, 6.42 mmol), Na- $[Mo(CO)₃CP]₂DME (5.756 g, 12.83 mmol), and PCy₂H (4.22 mL,$ 19.25 mmol). The orange product (3.20 g, 54%) is sparingly soluble in hexane, acetone, or methanol and should be kept under an inert atmo-
sphere (mp 158 °C dec). Anal. Calcd for C₄₃H₇₃MoO₂P₃Pd (*M_r* = 917.32): C, 56.30; H, 8.02. Found: C, 56.20; H, 8.15. IR (KBr): $\nu(CO)$ 1882 vs, 1806 vs; $\nu(PH)$ 2292 w. IR (CH_2Cl_2) : $\nu(CO)$ 1878 vs, 1790 **vs.** ¹H NMR (C₆D₆): δ 5.42 (s, 5 H, Cp), 4.3 (dm, 2 H, PCy₂H). ³¹P{¹H} NMR (CH₂Cl₂/C₆D₆): δ 261.6 (dd, 1 P, PCy₂, ²J(PP) = 153 and 23), 10.8 (dd, 1 P, PCy₂H trans to PCy₂, ² $J(PP) = 153$ and 17, from ³¹P NMR, ¹J(PH) = 292), 0.7 (pseudo t, 1 P, PCy₂H cis to PCy₂, from $3^{1}P$ NMR, $^{1}J(PH) = 290$). **(a). (a). (a). (a). (a). (a). The same method as for** yyed, using [PdCl₂(NCPh)₂] (2.461 g, 6.42 mmol), Na-

[-2DME (5.756 g, 12.83 mmol), and PCy₂H (4.22 mL, The orange product (3.20 g, 54%) is sparingl

3.90 mmol), Na[Mo(CO)₃Cp].2DME (3.500 g, 7.80 mmol), and PPh₂H (2.04 mL, 11.7 mmol) were reacted in THF as for 3a. After solvent evaporation, the residue was washed with 30 mL of hexane and chromatographed over a 25 × 2.5 cm column of Florisil 60-100 mesh. After elution with hexane and with 20:80 and 40:60 dichloromethane/hexane (yielding mostly $[CpMo(CO)₂]$ ₂), the THF fraction was collected and evaporated to dryness and the solid washed with 30 mL of hexane and dried in vacuo. A red microcrystalline solid was obtained (2.10 g, 61.2%), which is insoluble in hexane but soluble in acetone, toluene, or dichloromethane (mp 236 °C dec). Anal. Calcd for $C_{43}H_{37}MoO_2P_3Pd$ *(M,* = 881.03): C, 58.62; H, 4.23. Found: C, 58.48; H, 4.33. IR (KBr): $\nu(CO)$ 1884 vs, 1802 vs. IR (CH_2Cl_2) : $\nu(CO)$ 1890 vs, 1806 vs. ¹H NMR (C_6D_6): δ 6.8 (dm, 1 H, PPh₂H), 6.2 (dm, 1 H, PPh₂H), 4.84 (s 5 H, Cp). ³¹P(¹H) NMR (CH₂Cl₂/C₆D₆): δ 209.7 (dd, 1 P, μ -PPh₂, $^2J(\text{PP}) = 162$ and 27), -2.0 (dd, 1 P, PPh₂H trans to PPh₂, $^2J(\text{PP}) = 162$ and 18, from ³¹P NMR, ¹J(PH) = 329), -14.0 (dd, 1 P, PPh₂H cis to PPh₂, ²J(PP) = 27 and 18, from ³¹P NMR, ¹J(PH) = 323). $[Cp({\rm OC})_2Mo(\mu\text{-PPh}_2)Pd({\rm PPh}_2H)_2]$ (2b). $[{\rm PdCl}_2({\rm NCPh})_2]$ (1.500 g, 291), 7.0 (d.1², P. Cy₂, H cis to PCy₂, $\mathcal{I}/(\text{PP}) = 39$, from ³¹P NMR,

[PH($\mathcal{D}(2)$], $\mathcal{D}(\mathbf{d}, \mathbf{L})$, The same method as for

[Cp($\mathcal{D}(2)$], $\mathcal{M}(4 - \mathcal{D}(\mathbf{y})) = 29$, $\mathcal{M}(2 \times 2)$ mL) (2.461 g ,

g, 5.33 mmol) dissolved in THF (100 **mL)** was added dropwise (45 min) at -78 °C a solution of Na[W(CO)₃Cp]-2DME (5.720 g, 10.67 mmol) in THF (120 mL). The violet solution was stirred for 15 min, and PCy₂H (3.50 mL, 15.9 mmol) was added dropwise. CO evolution was observed, and the dark yellow-orange solution was allowed to reach room temperature (3 h), stirred overnight, and evaporated to dryness. The residue was dried for 3 **h** and extracted with ca. 6 **X** 70 mL of toluene and filtered through a **50 X** 25 mm Celite column. Upon addition of 40-50 mL of acetone, the oil obtained after solvent evaporation crystallized overnight at -20 °C. After filtration, the yellow, air-stable product was washed with 3×10 mL of acetone and dried in vacuo (4.20 g, 78.4%). It is sparingly soluble in hexane, acetone, or methanol (mp 195 \degree C dec). Anal. Calcd for C₄₃H₇₃O₂P₃PdW (M_r = 1005.23): C, 51.37; H, 7.31. Found: C, 51.54; H, 7.17. IR (KBr): v(C0) 1878 vs, 1803 vs; u(PH) δ 221.4 (dd with W satellites, 1 P, μ -PCy₂, ²J(PP) = 158 and 27, ¹J(PW) = 366), 6.75 (dd, 1 P, PCy₂H trans to PCy₂, ²J(PP) = 158 and 13, from ³¹P NMR, ¹J(PH) = 296), -11.9 (pseudo t, 1 P, PCy₂H cis to PCy₂, 2J (PP) \approx 27 and 13, from ³¹P NMR, ¹J(PH) = 278). **[Cp(OC)₂W(µ-PCy₂)Pd(PCy₂H)₂] (3a).** To [PdCl₂(NCPh)₂] (2.044 2288 w. IR (CH_2Cl_2) : $\nu(CO)$ 1871 vs, 1788 vs. ¹H NMR (C_6D_6) : δ 5.39 (s, 5 H, Cp), 4.3 (dm, 2 H, PCy₂H). $^{31}P(^{1}H)$ NMR (CH₂Cl₂/C₆D₆): exame and with 20:30 and 40:00 mb 40:00 methanon (hexame and with C_1D_2) and 40 dyness and the solid washed with 30 mL of hexame and hey and the solid with C_2D_3). It is the methanon of the solid with 30 mL of hexam

 $[Cp(OC)_2W(\mu-PPh_2)Pd(PPh_2H)_2]$ (3b). The same procedure as for **3a** was employed using $[PdCl_2(NCPh)_2]$ (0.383 g, 1.0 mmol), Na[W-(CO),Cp].ZDME (1.072 g, 2.0 mmol), and PPhzH (0.52 **mL,** 3.0 mol). A red solid (0.510 g, 52.3%) was obtained, which is insoluble in hexane but soluble in acetone, toluene, or dichloromethane and should be stored under an inert atmosphere (mp 168 °C dec). Anal. Calcd for $C_{43}H_{37}$ - O_2P_3PdW (M_r = 968.94): C, 53.31; H, 3.85. Found: C, 52.83; H, 3.84. IR (KBr): ν (CO) 1896 vs, 1816 vs. IR (CH₂Cl₂): ν (CO) 1884 vs, 1799 4.83 (s, 5 H, Cp). ³¹P(¹H} NMR (CH₂Cl₂/C₆D₆): δ 174.5 (dd with W satellites, 1 P, μ -PPh₂, ²J(PP) = 165 and 29, ¹J(PW) = 410), -5.4 (dd, 1 P, PPh₂H trans to PPh₂, ²J(PP) = 165 and 16, from ³¹P NMR, ¹J(PH) **331), -26.0 (pseudo t, 1 P, PPh₂H** cis to PPh₂, ² $J(PP) \approx 29$ and 16, from ³¹P NMR, ¹ $J(PH) = 323$. vs. ¹H NMR (C_6D_6): δ 6.8 (dm, 1 H, PPh₂H), 6.3 (dm, 1 H, PPh₂H),

 $[(OC)_4Mn(\mu-PCy_2)Pd(PCy_2H)_2]$ (4a). $[PdCl_2(NCPh)_2]$ (0.600 g,

1.56 mmol), $\text{Na}[\text{Mn}(\text{CO})_5]$ (31.2 mL of a 0.1 M THF solution), and PCy₂H (1.03 mL, 4.68 mmol) were reacted in THF as for 3a. The solution was evaporated to **dryness,** and a yellow solid was obtained after elimination of volatile HMn(CO)₅. This solid was dissolved in 25 mL of CH₂Cl₂, the solution was filtered over Celite and concentrated to 2 **mL,** and the product was **crystalked** with 15 **mL** of acetone, washed with 2 **X** *5* **mL** of acetone and 3 **X** 20 mL of hexane, and dried in vacuo. The yellow product (1.120 g, 82.5%) obtained is sparingly soluble in hexane, acetone, and methanol and should be stored under nitrogen (mp 163 °C). Anal. Calcd for $C_{40}H_{68}MnO_4P_3Pd$ *(M_r* = 867.24): C, 55.40; H, 7.90. Found: C, 55.42; H, 7.75. IR (KBr): ν (CO) 1993 m, 1902 vs br; ν (PH) 2270 w, 2290 w. IR (CH₂Cl₂): ν (CO) 1996 m, 1904 vs, 1888 sh. ¹H 194), 14.3 (dd, 1 P, PCy₂H trans to PCy₂, ²J(PP) = 194 and 30, from $3^{1}P$, $^{1}J(PH) = 292$), 3.8 (pseudo t, 1 P, PCy₂H cis to PCy₂, $^{2}J(PP) \approx 30$ and 20, from ^{31}P , $^{1}J(PH) = 290$). NMR (C_6D_6) : δ 4.50 (dm, 1 H, PCy₂H), 4.30 (dm, 1 H, PCy₂H). $^{31}P_{1}^{1}H_{1}^{1}NMR$ (CH₂Cl₂/C₆D₆): δ 228.3 (d br, 1 P, μ -PCy₂, ²J(PP) duct (1.120 g, 82.5%) obtained and should be set of C₄₀H₆₈MnO₄P₃Pd (55.42; H, 7.75. IR (KBr): 90 w. IR (CH₂Cl₂): ν(CU₂): ν(CU₂): δ 22)
90 w. IR (CH₂Cl₂): ν(CU₂): ε δ 22): δ 22
06): δ 4.50 (dm, 1 H, P

2.00 mmol), $\text{Na}[\text{Mn}(\text{CO})_5]$ (40 mL of a 0.1 M THF solution) and PPh2H (1.04 mL, 6.0 **mmol)** were reacted in THF as for **3a,** but the residue obtained after THF evaporation was crystallized from 30 mL of cold methanol. The solid was chromatographed over a 25×2.5 cm column of Florisii 60-100 mesh. The orange-red CH₂Cl₂/hexane (20:80) fraction was evaporated to dryness and the solid washed with hexane and dried in vacuo. A yellow-orange microcrystalline product was obtained $(0.880 \text{ g}, 53.0\%)$. It is insoluble in hexane and soluble in acetone, toluene, or dichloromethane (mp 117 °C). Anal. Calcd for C₄₀H₃₂MnO₄P₃Pd *(M,* = 830.96): C, 57.81; H, 3.88. Found: C, 57.69; H, 3.94. IR (KBr): $\nu(CO)$ 2012 m, 1936 m, 1925 vs, 1903 vs. IR (CH₂Cl₂): $\nu(CO)$ 2016 m, 1929 vs br, 1905 vs. ¹H NMR (C₆D₆): δ 6.2 (dm, 1 H, PPh₂H), 7.2 $(\text{dm}, 1 \text{ H}, \text{PPh}_2H)$. ³¹P{¹H} NMR $(\text{CH}_2\text{Cl}_2/\text{C}_6\text{D}_6)$: δ 184.0 (d br, 1 P, μ -PPh₂, ²J(PP) = 201), -4.7 (dd, 1 P, PPh₂H trans to PPh₂, ²J(PP) = 201 and 25, from ³¹P, ¹J(PH) = 337), -12.1 (pseudo t, 1 P, PPh₂H cis to PPh₂, $^{2}J(PP) \approx 36$ and 25, from ³¹P, ¹J(PH) = 324). [(OC)₄Mn(μ -PPh₂)Pd(PPh₂H)₂] (4b). [PdCl₂(NCPh)₂] (0.766 g, 63.82 and 10.1 The (KBr): ν (CO) 1993 m, 1902 vs br, ν (PH)

15.342; H, 7.75. IR (KBr): ν (CO) 1993 m, 1902 vs br, ν (PH)

19.92 vs br, ν (PH)

[Cp(OC)Fe(µ-PCy₂)Pd(PCy₂H)₂] (5a). To [PdCl₂(NCPh)₂] (0.383 g, 1.00 mmol) dissolved in THF (50 mL) was added dropwise PCy₂H (0.66 mL, 3.0 mmol); the solution was cooled at -78 °C, and then a 0.1 M THF solution of $Na[Fe(CO)_2Cp]$ (20 mL) was added dropwise. The reaction was performed as for **3s,** but the product could not be isolated analytically pure (contamination with $[CpFe(CO)₂]$). IR (KBr): $\nu(CO)$ P, μ -PCy₂, ²J(PP) = 181 and 58), 12.2 (dd, 1 P, PCy₂H cis to PCy₂, $^{2}J(PP)$ = 58 and 18, from ³¹P NMR, $^{1}J(PH)$ = 285), -9.1 (dd, 1 P, PCy₂H trans to PCy₂, ²J(PP) = 181 and 18, from ³¹P NMR, ¹J(PH) = 279). 1853 m; u(PH) 2230 W. 31P('H} NMR (CH2C12/C6D6): **6** 219.2 (dd, 1

 $[(OC), Co(\mu-PCy_2)Pd(PCy_2H)_2]$ (6a). At -78 °C, a 0.1 M THF solution of $Na[Co(CO)_4]$ (75 mL) was added dropwise (45 min) to $[PdCl₂(NCP_b)₂]$ (1.438 g, 3.75 mmol) dissolved in THF (30 mL). The violet solution was stirred for 0.4 h, and PCy_2H (2.47 mL, 11.2 mmol) in THF (15 mL) was added dropwise. CO evolution was observed. A brown solution was obtained that was brought to room temperature (3 h), stirred overnight and evaporated to dryness. The residue was extracted with ca. 80 mL of toluene and filtered through a 5×2.5 cm column of Celite. After solvent evaporation, the residue was crystallized with 20 mL of acetone. Using chromatography (10:90 CH₂Cl₂/hexane) over a 40 × 3 cm column of Kiesegel resin, two fractions were separated: the green one contained **13 (see** below) and evaporation of the yellow fraction afforded a yellow complex (1.200 g, 37.9%), sparingly soluble in hexane and diethyl ether and soluble in toluene and CH_2Cl_2 (mp 168 "C). Anal. Calcd for C39H68Co03P3Pd *(M,* = 843.23): C, *55.55;* H, 8.13. Found: C, 55.47; H, 8.19. IR (KBr): ν (CO) 1977 s, 1901 vs; δ 4.26 (dm, 1 H, PCy₂H), 4.10 (dm, 1 H, PCy₂H). ³¹P[¹H] NMR (CH_2Cl_2/C_6D_6) : δ 287.1 (d br, 1 P, μ -PCy₂, ² $J(\overrightarrow{PP}) = 168$), 11.5 (dd, 1 P, PCy₂H cis to PCy₂, ² $J(PP) = 38$ and 10, from ³¹P, ¹/₂.47 (PP) in the system of the system of the system of the system of 296), 5.2 (dd, 1 P, PCy₂H cis to PCy₂, ²J(PP) = 38 and 10, from ³¹P, ¹J(PH) = 301). $\nu(PH)$ 2300 w. IR (CH₂Cl₂): $\nu(CO)$ 1977 s, 1903 vs. ¹H NMR (C₆D₆): Frigan: Fri Tri Navar (Cristing): 10.1 (bselvi): 0.1 (bselvi) 10.1 (PP) = 201), -47 (dd, 1 P, PPb₃H trans to PPb₂, ²/(PP) = 301), -147 (dd, 1 P, PPb₃H trans to PPb₂, ²/(PP) = 374),
(FP) = 201), -47 (dd, 1 P, P

[(OC),Mn(µ-PPh₂)Pt(PPh₃)₂] (8). PPh₂Cl (0.045 mL, 0.25 mmol) was added at -78 °C to a 0.1 M THF solution of Na[Mn(CO)₅] (2.5) mL). Solid $[Pt(C_2H_4)(PPh_3)_2]$ (0.187 g, 0.250 mmol) was added under stirring to this yellow solution. The solution was allowed to reach room temperature and evaporated to dryness, and the residue was extracted with toluene. The solvent was evaporated under reduced pressure, and the residue was crystallized from acetone *(5* mL)/hexane *(5* mL) and then dried in vacuo to afford the product as a yellow solid (0.180 g, 67%). Anal. Calcd for C₅₂H₄₀MnO₄P₃Pt ($M_r = 1071.85$): C, 58.27; H, 3.76. Found: C, 58.23; H, 3.98. IR (KBr): ν (CO) 2060 w, 2018 s, 1995 w, 1980 w, 1950 s, 1939 sh, 1929 s, 1905 s. IR (CH₂Cl₂): ν (CO) 2063 w,

2014 **s**, 1987 **w**, 1979 **w**, 1925 **s**, 1901 **s**. ³¹P[¹H] NMR (CH₂Cl₂/C₆D₆): δ 165.6 (d br with Pt satellites, 1 P, μ -PPh₂, ²J(PP) = 236, ¹J(PPt) = **2471), 31.1 (d with Pt satellites, 1 P, PPh₃ trans to PPh₂, ²** $J(PP) = 236$ **,** ${}^{1}J(\text{PPt}) = 3198$), 30.3 (d with Pt satellites, 1 P, PPh₃ cis to PPh₂, ² $J(\text{PP}) = 21$, ¹ $J(\text{PPt}) = 3262$).

[(b) [(b) [(b) [(b) [(c) [(c) [(c) [(d) (d) with Pt satellities, **|P**, **PPh₂**, ²(**PP) ₂** (*PP***)** [(OC)₃Co(μ -PPh₂)Pt(PPh₃)₂] (9). A 0.1 M THF solution of Na- $[Co(CO)_4]$ (2.5 mL), PPh₂Cl (0.045 mL, 0.25 mmol), and $[Pt(C_2H_4)-$ **(PPh₃)₂**] **(0.187 g, 0.250 mmol)** was mixed at -78 °C as for **8**. The red solution was stirred overnight and evaporated to dryness and the residue washed with hexane and recrystallized from toluene/hexane. The red product $(0.153 \text{ g}, 57\%)$ is soluble in toluene and CH_2Cl_2 but sparingly soluble in acetone or hexane. Anal. Calcd for C₅₁H₄₀CoO₃P₃Pt (M_I **1047.83):** C, **58.46;** H, **3.85.** Found: C, **58.75;** H, **3.84.** IR (KBr): **s, 1925 s, br, 1915 s, br. ³¹P(¹H) NMR (CH₂Cl₂/C₆D₆): 8 199.9 (d br** with Pt satellites, 1 P , PPh₂, ²J(PP) = 222, ¹J(PPt) = 2827), 30.3 (d with Pt satellites, 1 P, PPh₃ trans to PPh₂, ²J(PP) = 222, ¹J(PPt) = 3170), **23.8 (d with Pt satellites, 1 P, PPh₃ cis to PPh₂, ²J(PP) = 19, ¹J(PPt) = 3719).** ν (CO) 1990 s, 1936 s, 1930 s, 1915 s, 1902 s. IR (CH₂Cl₂): ν (CO) 1992 ganic Chemistry, $Vol. 31$, $No. 3$, 1992

w, 1979 w, 1925 s, 1901 s, $^{19}P^1H$ NMR (CH₂CL_p/C_pD_a): meth

with Pt satellites, 1 P, μ -PPh₃,²/(PP) = 226, $1/(PP^1)$ = similar

with Pt satellites, 1 P, μ 241), 31.1 (d with Pt atalelities, 1 P, PPh₃ trans to PPh₃, ²(PP) = 225,

1.((PC)-(Co(C),Co(L-PPh₃)-PH₃C(10.045 mL, 0.25 mmol), and [Pt(C₃H₄)-

[(O(C),Co(L-PPh₃)-PH₃C(10.045 mL, 0.25 mmol), and [Pt(C₃H

Reactions of 1-7 with CO. Solutions 5×10^{-2} M in compounds 1-4 and **6a** in CH_2Cl_2/C_6D_6 (1:1) were prepared in 10-mm NMR tubes. CO was slowly bubbled into the solution for 10 min and the tube sealed. For compounds la, *2a,* and 3a, the solution contained (31P(1H) NMR) an equilibrium mixture of these compounds, the **cis** and trans CO substituted 10-12, respectively, and free \overline{PCy}_2H (Tables I and III). Bubbling N_2 into the solution resulted in immediate CO elimination and quantitative regeneration of la-3a. 1915 s, br. ³¹P[¹H] NMR
ites, 1 P, PPh₂, ²J(PP) = 22
1 P, PPh₃ trans to PPh₂, ²
Pt satellites, 1 P, PPh₃ cis
of 1–7 with CO. Solutions
 I_2Cl_2/C_6D_6 (1:1) were prepa
ubbled into the solution for
ia, **2a**

 $[Cp(OC)_2Cr(\mu-PCy_2)Pd(CO)(PCy_2H)]$ (10). $^{31}P_{1}^{1}H_{1}^{1}NMR$ δ (trans, 23%) 307.2 (d, 1 P, μ -PCy₂, ²J(PP) = 105), 10.0 (d, 1 P, $\angle P\angle(Y_2H, \angle Y(PP) = 105)$. (CH2C12/C6D6): 6 **(cis, 77%) 294.0 (S, 1** P, pPCy2), **2.4 (b, 1** P, PCy2H);

 $[CP(OC)_2M_0(\mu-PCy_2)Pd(CO)(PCy_2H)]$ (11). ³¹ $P{^1H}$ NMR
(CH₂Cl₂/C₆D₆): δ (cis, 85%) 267.4 (d, 1 P, μ -PCy₂, ²J(PP) = 24), -1.7 $(d, 1 \text{ P}, \text{ PCy}_2\text{H}, \text{ }^2J(\text{PP}) = 24)$; δ (trans, 15%) 282.0 (d, 1 P, μ -PCy₂, $^{2}J(PP) = 119$, 11.7 (d, 1 P, PCy₂H, ²J(PP) = 119).

 $[C_{\mathbf{p}}(OC)_{2}\mathbf{W}(\mu\text{-}PCy_{2})\mathbf{Pd}(CO)(PCy_{2}H)]$ (12). ³¹ $P(^{1}H)$ NMR $(CH_2Cl_2/C_6D_6):$ δ (cis, 84%) 226.7 (d with W satellites, 1 P, μ -PCy₂, $^{2}J(\text{PP}) = 26$, $J(\text{PW}) = 180$, -11.8 (d, 1 **P**, $PCy_{2}H$, $^{2}J(\text{PP}) = 26$); δ (trans, 16%) 239.1 (d, 1 **P**, μ -PCy₂, ²J(PP) = 117), 8.1 (d, 1 **P**, PCy₂H, ²J(PP) = 117). The ³¹P^{{1}H} NMR (CH₂Cl₂/CD₂Cl₂) spectrum of 12 was recorded at different temperatures (from -85 to 20 °C with 15 °C intervals). From integration of the signals for the cis and trans isomers, the equilibrium constant *(K)* at each temperature was estimated. Least-squares methods were used for fitting the data of the linear function: $\ln K = -(\Delta H^{\circ}/R)T^{-1} + \Delta S^{\circ}/R$. For the cis-12/trans-12 equilibrium the values $\Delta H^{\circ} = 7.1 \pm 0.4$ kJ·mol⁻¹ and $\Delta S^{\circ} = 10.5 \pm 1$ J.mo1-l.K-l were calculated. 5H, $\frac{1}{2}$ (i.e., 34(i.e., 5)(i.e., 5)(32)(22)(i.e., μ , μ)(i.e., μ

For compounds 2b, 3b, and 4a no substitution reaction with CO was observed. For 4b, no substitution was observed $(^{31}P(^{1}H)$ NMR spectrum at -70 °C) but at 25 °C both phosphine ligands became equivalent and
no coupling was observed with the μ -PPh₂ phosphorus atom. The coa-
lescence temperature was found between -20 and -10 °C.

For compound **60** no substitution was observed, but compound 13 has been obtained by other methods. The reaction of 13 with PCy₂H was monitored by ³¹P(¹H) NMR spectroscopy. Complete transformation in **6a** required **1** night of reaction time.

 $[(OC)_3Co(\mu-PCy_2)Pd(CO)(PCy_2H)]$ (13). The green chromatographic fraction collected in the preparation of *6a* afforded a green solid **(1.30** g, **51.5%),** sparingly soluble in acetone and soluble in dichloromethane and toluene (mp 193 °C dec). Anal. Calcd for C₂₈H₄₅CoO₄-PzPd **(MI** = **672.95):** C, **49.97;** H, **6.74.** Found C, **49.86;** H, **6.90.** IR (KBr): v(C0) **1970 s, 1910** vs. IR (CH2C12): v(C0) **1971 s, 1907** vs. (CH_2Cl_2/C_6D_6) : **8 280.1 (s br, 1 P,** μ **-PCy₂), 5.8 (s, 1 P, PCy₂H, from** $3^{31}P$, $J(PH) = 311$). ¹H NMR (C_6D_6) : δ 4.14 (dm, 1 H, PCy₂H).

For compound 7, complete transformation in $[Cp(OC)_2W(\mu-PPh_2)-$ Pt(CO)(PPh₃)] (14) occurred by substitution of one phosphine ligand by a CO group, as shown by ³¹P{¹H} NMR monitoring. Compound 7 can be regenerated by evaporation to dryness, addition of CH₂Cl₂, and stirring **(1** h). Compound 14 has been identified by comparison of its IR and ${}^{1}H$ and ${}^{31}P{}^{1}H$ } NMR spectra with the literature data.¹⁶

 $Na[(OC)_4Mn(\mu-PCy_2)Mn(CO)_4]$ (15a). This was the major product when the preparation of **4a** was carried out using $[PdCl₂(NCPh)₂]$ (1.151 g, **3.00** mmol), a **0.1** M THF solution of Na[Mn(CO)5] **(120** mL), and PCy2H **(1.97** mL, **9.00** mmol) in THF. The residue was extracted with acetone, the solution evaporated, and the residue washed with small amounts of dichloromethane and dried in vacuo. The lemon yellow product **(1.57** g, **47.2%** based on Mn) is sparingly soluble in dichloromethane and decomposes immediately in air. The spectroscopic data are similar to those for 15b. Interestingly, only traces (ca. 0.5% based on P) of 15a were observed by ³¹P NMR spectroscopy in the reaction (4 days) of $4a$, Na[Mn(CO)₅], and PCy₂H in THF at room temperature. Formation of 15a was not observed in the reaction of $\text{Na}[\text{Mn}(\text{CO})_5]$ and [Mn₂(CO)₁₀] with PCy₂H in THF at room temperature (5 days).

 $[NBu_4](OC)_4Mn(\mu-PCy_2)Mn(CO)_4]$ (15b). Addition of the stoichiometric amount of $[NBu_4]Br$ to 15a in acetone led to cation exchange. NaBr was removed by filtration, and the solution was evaporated to dryness. The yellow solid obtained is very stable in air (mp **228** "C dec). Anal. Calcd for C₃₆H₅₈Mn₂NO₈P ($M_r = 773.72$): C, 55.88; H, 7.55; N, 1.81. Found: C, 56.12; H, 7.61; N, 1.75. IR (KBr): ν (CO) 2020 **s, 1956 vs, 1910 vs, 1898 vs, 1866 sh. IR (CH₂Cl₂):** ν **(CO) 2027 s, 1960** vs, 1923 vs, 1903 sh, 1882 vs, 1860 vs. ¹³C{¹H} NMR (THF/CD₂Cl₂): $δ$ 228.4 (s br, CO). ³¹P^{[1}H] NMR (CH₂Cl₂/C₆D₆): δ 208.5 (s br, μ -PC v_2). μ -PCy₂).

 $[(OC)_{4}Mn(\mu-PCy_{2})(\mu-H)Mn(CO)_{4}]$ **(16).** To a solution of 15a (0.103 g, **0.133** mmol) in dichloromethane **(20** mL) was added **0.14** mmol of $HBF₄$ in diethyl ether. The colorless solution was evaporated to dryness and the residue extracted with **15** mL of hexane. A light yellow solid **(46** mg, **65%)** was obtained from the hexane solution (mp **186** "C). Anal. Calcd for C₂₀H₂₃Mn₂O₈P ($M_r = 532.25$): C, 45.13 H, 4.36. Found: C, 46.03; H, 5.00. IR (KBr): $v(CO)$ 2083 m, 2051 s, 1990 vs br, 1940 vs **46.03;** H, **5.00.** IR (KBr): v(C0) **2083** m, **2051 s, 1990** vs br, **1940** vs br. IR (CH2C12): v(C0) **2081** m, **2050 s, 1992** vs br, **1959** vs br. 'H NMR (C_6D_6) : δ -16.65 (d br, 1 H, μ -H, ¹J(HP) = 30). ³¹P^{[1}H] NMR $(CH_2Cl_2/C_6D_6): \ \delta$ 184.5 (s br, 1 P, μ -PCy₂).

 $[(OC)_4\text{Min}(\mu-\text{PPh}_2)(\mu-\text{H})\text{Pd}(\mu-\text{PPh}_2)_{2}\text{Min}(CO)_4]$ (17). The procedure described for 4b was followed, the reaction mixture being stirred for **3** days and then evaporated to dryness. Purification was performed by column chromatography, and from the **2080** dichloromethane/hexane fraction, an orange-yellow solid (0.366 g, 18.4%) was isolated and characterized as 17. Anal. Calcd for $C_{44}H_{31}Mn_2O_8P_3Pd$ ($M_r = 996.93$): C, 53.01; H, 3.13. Found: C, 52.92; H, 3.04. IR (CH₂Cl₂): ν (CO) 2058 **s**, 1987 **vs**, 1955 **vs.** ¹H NMR (C_6D_6) : δ -11.0 (ddd br, 1 H, μ -H, (dd, 1 **P**, μ -PPh₂ spanning the Pd-Mn bond, ²J(PP) = 272 and 26), -81 (complex m, **1** P, p-PPh,), **-101** (complex m, **1** P, p-PPh,). $^{2}J(HP) = 64.3, 26.0,$ and 13.8). ³¹P(¹H) NMR (CH₂Cl₂/C₆D₆): δ 140.0 ribed for 4**b** was followed,
and then evaporated to dr!
chromatography, and from
an orange-yellow solid (0
ged as 17. Anal. Calcd for
H, 3.13. Found: C, 52.92; H
1, 1955 vs. ¹H NMR (C₆
64.3, 26.0, and 13.8). ³¹P^{{1}

 $[(OC)_4Mn(\mu-PPb_2)Pt(CO)(\mu-PPb_2)Mn(CO)_4]$ (18). At -60 °C, 20 mL of THF was saturated with ethylene, and then Pt(COD)₂ (0.200 g **0.486 mmol) was dissolved.** At -70 °C, PPh₂Cl (9.72 mL of a 0.1 M solution in THF) and Na[Mn(CO)₅] (9.72 mL of a 0.1 M solution in THF) were first mixed and then added under an ethylene atmosphere to the solution of [Pt(COD),]. The temperature was slowly **(2** h) raised to room temperature. The initially yellow solution became red and was evaporated to dryness in vacuo. The residue was extracted with hexane, and the solution was filtered through a Celite-padded glass frit **(5.0 X 2.5** *cm)* and evaporated to dryness. The orange solid product **(0.400** g, **89%)** was dried in vacuo. It is soluble in all common solvents. Anal. Calcd for C₃₃H₂₀Mn₂O₉P₂Pt (M_r = 927.43): C, 42.74; H, 2.17. Found: C, **43.00;** H, **2.50.** IR (KBr): v(C0) **2062 s, 2040 s, 1988** vs, **1965** vs, $= 2266$). 1942 vs. IR (CH₂Cl₂): v (CO) 2072 s, 2047 s, 2006 sh, 1984 vs, 1944 s. ³¹P[¹H] NMR (CH₂Cl₂/C₆D₆): δ 161.9 (s with satellites of Pt, ¹J(PPt)

 $[(\mathbf{OC})_4\mathbf{M}\mathbf{n}(\mu-\mathbf{PPh}_2)\}_2\mathbf{Pt}(\mathbf{PPh}_3)\}_\mathbf{C} \cdot \mathbf{H}_8$ (19a). PPh₂C1 (12.4 mL of a 0.1 **M** solution in toluene) was added at -78 °C to a suspension of Na[Mn(CO)5] **(0.270** g, **1.238** mmol) in toluene **(20** mL). Solid [Pt- $(C_2H_4)_2(PPh_3)$] **(0.180 g, 0.619** mmol) was then added in small portions to the stirred solution. The reaction mixture was allowed to reach room temperature while stirring was continued overnight. The reaction was monitored by ${}^{31}P_1{}^{1}H_1{}^{1}NMR$ spectroscopy. Initially, the carbonyl derivative 18 was obtained, but the Pt-bound CO was slowly substituted by the phosphine ligand (see below). When complete transformation was achieved $(\approx 8 \text{ h})$, the solution was concentrated to $4-5 \text{ mL}$ and hexane **(35** mL) was added. A red solid **(0.380** g, **49%)** characterized as 19a solvated by a molecule of toluene was obtained (mp 130 °C dec). It is soluble in all common solvents except hexane and decomposes slowly in air. If this reaction is carried out in THF in place of toluene, important amounts of the dinuclear complex **8** are obtained beside **19a (see** below). **3.46.** Found: **C, 54.20;** H, **3.48.** IR (KBr): v(C0) **2042** m, **2000** m, **1969 s, 1932 s, 1912 s. IR** (CH2C12): v(C0) **2051** m, **2005** m, **1978 s,** satellites, 2 P, μ -PPh₂, ²J(PP) = 7, ¹J(PPt) = 2204), 34.8 (t with satellites of Pt, 1 P, PPh₃, $^{2}J(PP) = 7$, $^{1}J(PPt) = 4662$. Anal. Calcd for $C_{50}H_{35}Mn_2O_8P_3Pt-C_7H_8$ *(M_r* = 1253.85): *C*, 54.60; *H*, 1945 s, 1919 s. ³¹P(¹H) NMR (CH₂Cl₂/C₆D₆): δ 110.0 (d with Pt

Reaction of 18 with Phosphines. The CO coordinated to platinum in 18 is readily displaced by phosphine ligands. The reaction of 18 **(0.084** g, 0.091 mmol) with PPh₃ (0.024 g, 0.091 mmol) produced the following: (a) in toluene, only substitution of the CO group by the phosphine ligand,

 $^{\circ}R = \sum (|F_{\rm o}| - |F_{\rm c}|)/\sum |F_{\rm o}|$. $R_{\rm w} = \sum (|F_{\rm o}| - |F_{\rm c}|)^2/\omega |F_{\rm o}|^2$ ^{1/2}.

leading to complex 19a; (b) in THF, partial substitution of a "Ph₂P-Mn(C0)4" fragment, leading to a mixture of 8 (major, if 2 equiv of phosphine are added) and 19a (minor). The phosphine complex 19a did not react under 1 atm of CO to regenerate 18. The kinetics of this irreversible reaction was studied. A 1-mL volume of a 10^{-4} M solution of PPh₃ was mixed with 1 mL of a 10^{-4} M solution of 18 in toluene- d_s , and the variations in phosphine and 19a concentrations were monitored by ³¹P[¹H] NMR spectroscopy. At 20 °C, the estimated rate constant for a second-order process was $k = 1.5 \times 10^{-3}$ L·mol⁻¹·s⁻¹

The reaction of 18 (0.120 g, 0.129 mmol) with PCy₂H (1.29 mL of a 0.1 M solution in toluene) was instantaneous. The red product $[((OC)_4Mn(\mu-PPh_2)]_2Pt(PCy_2H)]$ (19b) was only characterized by spectroscopy. ³¹P[¹H] NMR (C₇H₈/C₆D₆): δ 114.9 (s with Pt satellites, 1
2 P, μ -PPh₂, ¹J(PPt) = 2029), 25.3 (s with Pt satellites, 1 P, PC_{Y2}H, $\mathrm{L}^1 J(\mathrm{PPt}) = 2890$, from ³¹P NMR, $\mathrm{L}^1 J(\mathrm{PH}) = 305$). No evolution of the

³¹P(¹H) NMR spectrum was observed after 12 h.
The reaction of 18 (0.365 g, 0.395 mmol) with PPh₂H (3.95 mL of a 0.1 M solution in toluene) was instantaneous in toluene. The red product $[(OC)_4Mn(\mu-PPh_2)]_2Pt(PPh_2H)]$ (19c) was only characterized by spectroscopy. It transforms in toluene (3 h) to produce yellow 20. $31P\{^1H\}$ NMR (CH₂Cl₂/C₆D₆): δ 113.4 (s with Pt satellites, 2 P, μ -PPh₂, $J(\text{PPt}) = 2031$, 12.8 (s with Pt satellites, 1 P, PPh₂H, $J(\text{PPt}) = 4348$).

 $[(OC)_4Mn(\mu-H)(\mu-PPh_2)Pt(\mu-PPh_2)_2Mn(CO)_4]$ (20). The dark red solution obtained during the synthesis of 19c from the reaction of 18 with PPhzH **(see** above) became light yellow after being stirred for 3 h. The was washed with hexane and dried in vacuo (mp >200 °C). Anal. Calcd for $C_{44}H_{31}Mn_2O_8P_3Pt$ ($M_r = 1085.62$): C, 48.68; H, 2.87. Found: C, 48.52; H, 2.72. IR (KBr): u(C0) 2060 **s,** 1990 vs, 1978 vs, 1954 vs. IR δ –10.75 (ddd, br with Pt satellites, 1 H, μ -H, ²J(HP) = 55.6, 18.1, and 6.5, ¹J(HPt) = 526). ³¹P[¹H] NMR (CH₂Cl₂/C₆D₆): δ 124.2 (d, br with Pt satellites, 1 P, μ -PPh₂ spanning Pt-Mn bond, ²J(PP) = 240, ¹J(PPt) = 1743), ca. -83 (complex m with Pt satellites, 1 P, μ -PPh₂, ¹J(PPt) = 2352), ca. -102 (complex m with Pt satellites, 1 P, μ -PPh₂, ¹J(PPt) = 1698). $(CH_2Cl_2):$ ν (CO) 2070 m, 2058 m, 1985 vs, 1954 vs. ¹H NMR (C₆D₆):

The kinetics of the P-H addition reaction was studied by $^{31}P_{1}^{1}H_{1}^{1}$ NMR monitoring of the concentration decrease of a 3.6×10^{-5} M solution of 19c in toluene- d_8 . At 20 °C, the estimated rate constant for the first-order process was $k = 1.3 \times 10^{-3} \text{ s}^{-1}$. $\frac{1}{2}$ in toluene
r process v
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$

 $[CP(OC)_2W(\mu-H)(\mu-PPh_2)Pt(\mu-PPh_2)]_2$ (21). Na $[W(CO)_3Cp]$. 2DME (0.565 g, 1.05 mmol) was added to a stirred suspension of $[PtCl(\mu-PPh_2)(PPh_2H)]$, (0.634 g, 0.527 mmol) in THF (70 mL). The temperature was raised to reach **55-60** "C. After 1 h, the white solid has turned yellow, and after *5* h, the solid has completely dissolved. Stirring was continued overnight, and the orange solution was filtered and evaporated under reduced pressure. The solid residue was extracted with toluene, and the solution was filtered and evaporated in vacuo. The residue was chromatographed on a silica gel column (3 **X** 24 cm; Kieselgel Merck 60; 70-230 mesh). The column was eluted with CH_2Cl_2 / hexane (1:4 and 2:3). The latter fraction was evaporated to dryness. Yellow solid 21 was obtained, recrystallized from acetone/hexane, and isolated as a mixture of isomers (0.560 **g,** 61.0%). It is sparingly soluble in acetone and insoluble in hexane. Anal. Calcd for $C_{62}H_{52}O_4P_4Pt_2W_2$ *(M,* = 1742.89): C, 42.72; H, 3.01. Found: C, 42.71; H, 3.40. IR

Table VI. Fractional Atomic Coordinates (XlO') with **Esd's** in Parentheses for the Non-Hydrogen Atoms of $19a-C_7H_8$

	arentneses for the inon-riyarogen Atoms of $19aC7$ $\pi8$		
	x/a	y/b	z/c
P _t	1355(1)	2708 (1)	1256(1)
Mn(1)	-690 (1)	1726(1)	-517 (1)
Mn(2)	928 (1)	2971 (1)	-1270 (1)
P(1)	2354 (1)	3005(1)	3174 (1)
P(2)	$-313(1)$	2283 (1)	1391 (2)
P(3)	2517(2)	3123 (1)	284 (2)
O(1)	933 (4)	699 (3)	279 (6)
O(2)	$-2537(5)$	668 (4)	$-373(7)$
O(3)	-1140 (5)	1014 (4)	–2978 (5)
O(4)	$-2165(5)$	2853 (4)	$-1326(6)$
O(5)	1399 (5)	1491 (3)	–2198 (5)
O(6)	2257(6)	3883 (4)	$-2408(5)$
O(7)	$-975(6)$	2889 (4)	$-3397(5)$
O(8)	$-31(6)$	4221 (3)	$-349(6)$
C(1) C(2)	328 (6) $-1806(6)$	1108(4) 1069(5)	-2 (6) $-412(7)$
C(3)	$-920(7)$	1306(5)	$-2045(7)$
C(4)	$-1572(7)$	2437 (5)	$-1008(7)$
C(5)	1230 (6)	2058 (4)	$-1814(7)$
C(6)	1717(7)	3528 (4)	$-1972(7)$
C(7)	$-275(7)$	2886 (5)	$-2559(7)$
C(8)	381 (7)	3746 (4)	$-633(7)$
C(9)	3808 (5)	3214 (4)	3555 (6)
C(10)	4285 (6)	2664 (4)	3109 (7)
C(11)	5395 (7)	2748 (5)	3446 (8)
C(12)	6022(8)	3374 (6)	4213 (8)
C(13)	5555 (8)	3906 (6)	4657 (9)
C(14)	4441 (7)	3843 (5)	4336 (7)
C(15) C(16)	2322 (5)	2274 (4)	4158 (6)
C(17)	2015 (6) 2121 (7)	1516 (4) 933 (5)	3672 (7) 4398 (8)
C(18)	2555 (7)	1125(6)	5604 (8)
C(19)	2883 (7)	1880 (5)	6105 (9)
C(20)	2772 (6)	2467 (5)	5372 (7)
C(21)	2000 (5)	3872 (4)	3764 (6)
C(22)	1514 (6)	3908 (5)	4645 (7)
C(23)	1232(7)	4605 (5)	4980 (8)
C(24)	1382 (7)	5233 (5)	4422 (8)
C(25)	1831 (6)	5208 (5)	3559 (7)
C(26) C(27)	2148 (6) $-466(5)$	4520 (4) 1673(4)	3219 (6) 2503 (6)
C(28)	-607 (5)	880 (4)	2327 (6)
C(29)	$-679(6)$	436 (5)	3223 (7)
C(30)	$-588(7)$	791 (5)	4323 (8)
C(31)	$-452(7)$	1593 (5)	4530 (8)
C(32)	$-379(6)$	2031 (4)	3644 (6)
C(33)	$-1092(5)$	3020 (4)	1622(6)
C(34)	$-2160(6)$	2799 (5)	1554 (7)
C(35)	$-2765(7)$	3364 (5)	1736 (7)
C(36)	$-2312(7)$	4120 (5)	1963 (8)
C(37) C(38)	$-1260(6)$ $-647(6)$	4337 (5) 3787 (4)	2021 (7) 1846 (6)
C(39)	3484 (5)	2548 (4)	3(6)
C(40)	3364 (6)	1771 (4)	175(7)
C(41)	4020 (7)	1314 (6)	$-128(8)$
C(42)	4814 (8)	1630(6)	$-573(9)$
C(43)	4911 (8)	2383 (6)	$-747(8)$
C(44)	4262 (6)	2844 (5)	$-461(7)$
C(45)	3309 (6)	4092 (4)	807(6)
C(46)	4363 (7)	4196 (5)	1546 (7)
C(47)	4930 (8) 4434 (8)	4931 (5)	2044 (8)
C(48) C(49)	3399 (7)	5544 (6) 5473 (6)	1792 (8) 1037(8)
C(50)	2843 (7)	4735 (5)	549 (8)
C(51)	5840 (11)	1113(7)	4817 (11)
C(52)	6688 (11)	1145 (7)	4381 (12)
C(53)	6565 (14)	824 (10)	3243 (16)
C(54)	5623 (14)	473 (10)	2524 (16)
C(55)	4742 (14)	466 (10)	2908 (15)
C(56) C(57)	4802 (12) 5993 (13)	794 (8) 1504 (11)	4079 (14) 6047 (15)

(KBr): u(C0) 1938 **s,** 1861 **s.** IR (CH2C12): u(C0) 1934 **s,** 1855 **s.** 'H NMR (C_6D_6) : δ [only for major isomer, the other having similar chemical shifts] 4.36 (s, 10 H, C_5H_5), -8.87 (ddd with Pt satellites, 2 H, μ -H, $^{2}J(HP) = 54$, 18, and 8, $^{1}J(HPt) = 505$). ³¹P(¹H) NMR (CH₂Cl₂/C₆I)

6 112.3 (AA' part of an AA'XX' spin system with Pt satellites, 2 P, μ -PPh₂ spanning Pt-W bond, ²J(PP) = 188, ¹J(PPt) = 1642), -139.5 (XX' part of an AA'XX' spin system with Pt satellites, 2 P, μ -PPh₂, $IJ(PPt) = 2255$).

 $[(OC)_4\overline{Mn(\mu-H)(\mu-PPh_2)}Pt(\mu-PPh_2)]_2$ (22). A 0.1 M solution of $Na[Mn(CO)_5]$ (6.64 mL, 0.664 mmol) in THF was added to a stirred suspension of $[PtCl(\mu-PPh_2)(PPh_2H)]_2$ (0.400 g, 0.332 mmol) in THF (100 mL). The reaction occurred as described for 21. From the THF solution, a yellow solid was obtained as a mixture of isomers after recrystallization from acetone/hexane (0.270 **g,** 55.4%). Anal. Calcd for $C_{56}H_{42}M_{12}O_8P_4Pt_2$ ($M_r = 1466.91$): C, 45.85; H, 2.88. Found: C, 45.82; H, 3.08. IR (KBr): v(C0) 2060 m, 1978 **s,** 1947 **s.** IR (CH2C1,): $\nu(CO)$ 2067 m, 1984 s, 1949 s. ¹H NMR (C₆D₆): δ [only for major isomer, the other having similar chemical shifts] ca. -10.2 (br signals with **6** 125.0 (AA' part of an AA'XX' spin system with Pt satellites, 2 P, μ -PPh₂ spanning Pt-Mn bond, ²J(PP) = 205, ¹J(PPt) = 1642), -123.9 (XX' part of an AA'XX' spin system with Pt satellites, $2 P$, μ -PPh₂). Pt satellites, 2 H, μ -H, $^{1}J(HPt) \approx 530$). $^{31}P_{1}^{1}H_{1}^{1}NMR$ (CH₂Cl₂/C₆D₆): **[O** *Inorganic Chemistry, Vol. 31, No. 3, 1992*
 [12.3 (AA' part of an AA'XX' spin system with Pt satellites, 2 P, antes for
 PPP_b, spanning Pr–W bood, 3 (IPP) = 188, 1 (PP) = 1642), -11395 were
 ([OC), Mo(

Reactions of 1a-3a with PPh₂Cl. The W-Pd complex 3a (0.227 g, 0.226 mmol) in toluene (20 mL) reacted immediately with PPh₂Cl (0.41) mL of a 1:lO solution in toluene, 0.23 mmol). The yellow solution contained (³¹P NMR) a species that we propose to formulate as **24a**, contaminated with large amounts of the hydride 18a. Similar **species** 23a and 23b were observed from the Mo-Pd derivatives **2a** and 2b, respectively. However, the reaction of PPh₂Cl with the Cr-Pd complex 1a led to decomposition. tion.
—————————————————— an AA X spin system with PF satellities, 2P, μ -PFh₂). refined isotration with FPH satellities, 2P, μ -PFh₂). trically calls with PFh₂Cl. The W-Pd complex 3a (0.227 g, corresponding the (2.0 mL) reacted immediat

 $P{^1H}$ NMR $I^{31}P \ \dot{N} \dot{M} \dot{R}$, $I^{T}J(\dot{P}H) = 338$), -140.7 (dd, 1 P, μ -P cis to PCy₂H, ²J(PP) = 340
= 336 and 39), -173.4 (pseudo t, 1 P, μ -P trans to PCy₂H, ²J(PP) = 340 = 336 and 39), -173.4 (pseudo t, 1 P, μ -P trans to PCy₂H, ²J(PP) = 340 and 336). $[CP(OC)_2Mo(\mu-PCy_2)(\mu-PPb_2)PdCl(PCy_2H)]$ (23a). ³¹P^{{1}H} NMR
(CH₂Cl₂/C₆D₆): δ 16.0 (dd, 1 P, PCy₂H, ²J(PP) = 340 and 39, from

 $[CP(OC)_2Mod(\mu-PPh_2)_2PdCl(PPh_2H)]$ (23b). ³¹P{¹H} NMR
(CH₂Cl₂/C₆D₆): δ -1.3 (dd, 1 P, PPh₂H, ²J(PP) = 386 and 29, from
³¹P NMR, ¹J(PH) = 338), -138.7 (dd, 1 P, μ -PPh₂ cis to PPh₂H, ²J(PP) = 386
= 3 and 336).

 $[Cp(OC)_2W(\mu-PCy_2)(\mu-PPb_2)PdCl(PCy_2H)]$ (24a). ³¹P{¹H] NMR (CH_2Cl_2/C_6D_6) : δ 16.8 (dd, 1 P, PCy₂H, ²J(PP) = 340 and 34, from ${}^{31}P$ NMR, ${}^{1}J(PH) = 328$), -187.3 (dd with W satellites, 1 P, μ -P cis to PCy₂H, $^{2}J(PP)$ = 307 and 34, ¹J(PW) = 135), -215.2 (dd with W satellites, 1 P, μ -P trans to PCy₂H, ²J(PP) = 340 and 307, ¹J(PW) = 153).

Reaction of 3a with $[Ph_2PCo(CO)_4]$. At -78 °C, 0.25 mL (0.25 mmol) of a 1 M solution of PPh₂Cl in THF was added to 2.5 mL of a 0.1 M of Na $[Co(CO)_4]$ in THF. Complex 3a (0.250 g, 0.249 mmol) was added to this orange solution, and the mixture was allowed to reach room temperature (1 h). The solution was shown by ³¹P NMR spectroscopy to contain mainly 6a.

Reaction of 2b with $[Pt(C_2H_4)(PPb_3)_2]$. The reaction using 0.148 mmol was carried out in dichloromethane. The solution was stirred for 1 day. 'IP NMR spectroscopy showed that only phosphine exchange had

occurred, $[Cp(OC)_2Mo(\mu-PPh_2)Pd(PPh_3)_2]$ being the major product. $^{31}P{'}$ ¹H NMR (CH₂Cl₂/C₆D₆): δ 210.3 (dd, 1 P, μ -PPh₂, ²J(PP) = 159 and 26), 24.3 (dd, 1 P, PPh₂H trans to PPh₂, ²J(PP) = 159 and 23), 14.3 (pseudo t, 1 P, $PPh₂H$ cis to $PPh₂$).

Reaction of $[PdCl(\mu-PPh_2)(PPh_2H)]_2$ with Na $[W(CO)_3Cp]$ -2DME or Na[Mn(CO)₅]. Na[W(CO)₃Cp].2DME (0.403 g, 0.75 mmol) was added at -78 °C to a stirred suspension of $[PdCl(\mu-PPh_2)(PPh_2H)]_2$ (0.386 g, 0.375 mmol) in THF (70 mL). The temperature was raised to 25 $^{\circ}$ C. After being stirred for 2 h at room temperature, a red brown solution was obtained. It did not contain $(^{31}P$ NMR) any upfield signal assignable to a μ -PPh₂ group across a non Pd-Pd bond. 3b was identified as one of the major products. Similar results were obtained in the reaction with $Na[Mn(CO)_5]$, and formation of 17 was also observed.

NMR hterpretatioo. The second-order NMR spectra were interpreted with the help of the **LAOCOON3** program (IBM PC) and the PANIC program (Bruker Aspect 2000 computer).

_{Stray} Crystal Structure Determination of $[(OC)_4\overline{Mn(\mu-PPh_2)}]_2$ Pt- (PPh_3) +C₇H₈ (19a·C₇H₈). A crystal of 19a·C₇H₈ suitable for single-crystal X-ray diffraction was grown from toluene/hexane. Crystallographic data are summarized in Table V, and the final atomic coordi-

nates for the non-hydrogen atoms are given in Table VI. Unit cell parameters were determined from the *B* values of 29 carefully centered reflections, having $11.0 < \theta < 17.5^{\circ}$. All reflections with θ in the range $3-25^{\circ}$ were measured; of 9316 independent reflections, 6612, having I $\geq 2\sigma(I)$, were considered observed and used in the analysis. Data were collected at room temperature, the individual profiles having been analyzed following Lehmann and Larsen.⁴⁴ Intensities were corrected for Lorentz and polarization effects; a semiempirical absorption correction was applied (maximum and minimum values for the transmission factors were 1.277 and 1.000).⁴⁵ Only the observed reflections were used in the structure solution and refinement.

The structure was solved by Patterson and Fourier methods and re-
fined by full-matrix least squares first with isotropic and then with an-
isotropic thermal parameters in the last cycles for all the non-hydrogen atoms excepting the carbon atoms of the phenyl groups. The final *AF* map revealed the presence of a toluene molecule of solvation, which was refined isotropically. All hydrogen atoms were placed at their geometrically calculated positions $(C-\tilde{H} = 1.00 \text{ Å})$ and refined "riding" on the corresponding carbon atoms. The final cycles of refinement were carried out on the basis of 397 variables. After the last cycle, no parameter shifted by more than 0.9 esd. The largest remaining peak (close to the Pt atom) in the final difference map was equivalent to about $1.5 \text{ e}/\text{\AA}^3$. In the final cycles of refinement a weighting scheme, $w = K/(\sigma^2(F_0) +$ $gF_o²$], was used; at convergence the *K* and *g* values were 0.647 and 0.0122, respectively. The atomic scattering factors, corrected for the real and imaginary parts of anomalous dispersion, were taken from ref 46.

All calculations were carried out on the Cray X-MP/l2 computer of the 'Centro di Calcolo Elettronico Interuniversitario dell'Italia Nord-Orientale" (CINECA, Casalecchio Bologna, Italy) and on the Gould Powernode 6040 of the "Centro di Studio per la Strutturistica Diffrattometrica" del CNR (Parma, Italy) using the **SHELX-76** and SHELXS-86 systems of crystallographic computer programs.⁴

Adwnsledgomt. We are grateful to the Universidad de Alcala **de Henares (Spain) for a leave of absence to E.J. and to the Comunidad de Madrid for a grant. Financial support from the CNRS and the Commission of the European Communities (Contract No. ST 25-0347-C) is gratefully acknowledged.**

Registry No. la, 125778-34-9; **2a,** 125778-35-0; zb, 125778-36-1; **1,** 125778-37-2; 3b, 125778-38-3; 4a, 125797-80-0; 4b, 137966-58-6; **Sa,** 137916-10-0; cis-10, 125827-63-6; trans-10, 125778-24-7; cis-11, 125827-64-7; trans-11, 125778-25-8; cis-12, 125874-52-4; trans-12, 125778-26-9; cis-13, 137966-59-7; cis-14, 101307-75-9; 15a, 138008-137916-17-7; *6r,* 137916-18-8; **7,** 125046-18-6; 8, 137916-09-7; **9,** 52-3; 19, 138008-51-2; 16, 137966-60-0; 17, 137966-63-3; 18,71597- 15-4; 19a·C₇H_s, 137966-62-2; 19b, 138008-53-4; 19c, 137966-64-4; 20, 137966-65-5; 21, 137966-66-6; 22, 137966-67-7; **23r,** 137966-68-8; **23b,** 137966-69-9; **24a**, 137966-70-2; I (L = PH₃), 137966-71-3; I (L = CO), 137966-72-4; **III** (L = PH₃), 113509-18-5; **III** (L = CO), 137966-73-5; **111** $(L = PPh_3)$, 60038-75-7; $PdCl_2(NCPh)_2$, 14220-64-5; Na[Cr- (CO) ₃Cp], 12203-12-2; Na[Mo(CO)₃Cp], 12107-35-6; Na[W(CO)₃Cp], 12107-36-7; Na[Mn(CO)₅], 13859-41-1; Na[Fe(CO)₂Cp], 12152-20-4; $Na[Co(CO)_4]$, 14878-28-5; Pt(C₂H₄)(PPh₃)₂, 12120-15-9; Pt(COD)₂, PPh₂)Pd(PPh₃)₂], 138008-54-5; Mn, 7439-96-5; Pt, 7440-06-4; Pd, 7440-05-3; Cr, 7440-47-3; Mo, 7439-98-7; W, 7440-33-7; Fe, 7439-89-6; $12130-66-4$; $[PLC1(\mu-PPh_2)(PPh_2H)]_2$, 80374-72-7; $[Cp(OC)_2Mo(\mu-CPh_2H)]_2$ CO, 7440-48-4.

Sppplementary Material Available: Tables of crystallographic data, hydrogen atom coordinates and thermal parameters, and anisotropic and isotropic thermal parameters for the non-hydrogen atoms (4 pages); listings of observed and calculated structure factors (37 pages). Ordering information is given on any current masthead page.

- (44) Lehmann, M. **S.;** eyn, F. K. Acta Crystallogr., Sect. A **1974,30,580. (45) North,** A. C. T.; Phdhps, D. C.; Mathews, **F.** C. Acta Crystallogr., Sect.
- A **1968.24,** 351. (46) International Tables for X-Ray Crystallography; Kynoch Press: Bir-
- mingham, England, 1974; Vol. IV.
(47) Sheldrick, G. M. SHELX-76 Program for crystal structure determination.
- University of Cambridge, England, 1976. Sheldrick, G. M. SHELXS-86 Program for the solution of crystal structures. University of Göttingen, 1986.